Detecting the neutrinos Alain Blondel University of Geneva

- **1.** Discovery : missing Energy and Momentum
- 2. Lepton number, lepton flavour, neutrinos and antineutrinos
 - \rightarrow charged current neutrino interactions
- 3. Neutrinos and the Standard Model: Neutral Currents
- 4. The three families of neutrinos
- 5. Neutrinos from the Universe: solar neutrinos, atmospheric

neutrinos

- 5'. Supernova neutrinos
- 6. Neutrino properties: measuring the neutrino mass?
- 7. Neutrino oscillations and CP violation
- 8. On-going and future neutrino experiments on oscillations
- 9. What is the origin of neutrino masses?
- **10. Neutrino-less double-beta experiments**
- **11. See-saw, sterile neutrinos**
- 12. Conclusions

many reactions, beam types and detection techniques here I will follow the physics

Detecting the neutrinos Alain Blondel University of Geneva

- **1. Discovery : missing Energy and Momentum**
- 2. Lepton number, lepton flavour, neutrinos and antineutrinos → charged current neutrino interactions
- **3. Neutrinos and the Standard Model: Neutral Currents**
- 4. The three families of neutrinos
- 5. Neutrinos from the Universe: solar neutrinos, atmospheric

neutrinos

- 5'. Supernova neutrinos
- 6. Neutrino properties: measuring the neutrino mass?
- 7. Neutrino oscillations and CP violation
- 8. On-going and future neutrino experiments on oscillations
- 9. What is the origin of neutrino masses?
- **10. Neutrino-less double-beta experiments**
- 11. See-saw, sterile neutrinos
- 12. Conclusions

many reactions, beam types and detection techniques here I will follow the physics

MISSING ENERGY

Neutrinos: the birth of the idea 1930

Pauli's letter of the 4th of December 1930

Dear Radioactive Ladies and Gentlemen,

As the bearer of these lines, to whom I graciously ask you to listen, will explain to you in more detail, how because of the "wrong" statistics of the N and Li6 nuclei and the continuous beta spectrum, I have hit upon a desperate remedy to save the "exchange theorem" of statistics and the law of conservation of energy. Namely, the possibility that there could exist in the nuclei electrically neutral particles, that I wish to call neutrons, which have spin 1/2 and obey the exclusion principle and which further differ from light guanta in that they do not travel with the velocity of light. The mass of the neutrons should be of the same order of magnitude as the electron mass and in any event not larger than 0.01 proton masses. The continuous beta spectrum would then become understandable by the assumption that in beta decay a neutron is emitted in addition to the electron such that the sum of the energies of the neutron and the electron is constant...

I agree that my remedy could seem incredible because one should have seen those neutrons very earlier if they really exist. But only the one who dare can win and the difficult situation, due to the continuous structure of the beta spectrum, is lighted by a remark of my honoured predecessor, Mr Debye, who told me recently in Bruxelles: "Oh, It's well better not to think to this at all, like new taxes". From now on, every solution to the issue must be discussed. Thus, dear radioactive people, look and judge.

Unfortunately, I cannot appear in Tubingen personally since I am indispensable here in Zurich because of a ball on the night of 6/7 December. With my best regards to you, and also to Mr Back.

Your humble servant

Wolfgang Pauli

. W. Pauli

beta decay spectra are measured typically with scintillator readout with one or several photomultipliers. (deposited energy and range)

Another precise method uses a spectrometer with a magnetic field.

a cloud chamber embedded in a magnetic field allowed the discovery of the positron

lead plate

An extremely precise spectrometer (KATRIN) is used to measure the mass of the neutrino (see later)

Another neutrino was detected in 1947 with the discovery of the pion. (Powell et al, 1947). Maybe it was the same neutrino than in beta decay?

These emulsions were made of photographic gel and stacked.

Placed in high altitude balloons at up to 10km altitude, they allowed the observation of strongly interacting particles which are otherwise stopped by the atmosphere.

Emulsions played an important role in establishing the nature of the tau neutrino (E531, 1986; more recently, DONUT and OPERA experiments)

Missing energy and momentum was the key to the discovery of the tau lepton and its neutrino in e+e- collisions...

Figure 13. The scaled momentum spectrum of leptons from $e\mu$ events in three energy regions. The solid curve represents the expectation of a 1.8 GeV/ c^2 lepton with V-A interactions. The dashed and dot-dashed curves represent the expectations from a 1.8 GeV/ c^2 boson with spin 0 and spin 1, helicity 0, respectively. (From the second paper, Ref. 13.)

Figure 12. An $e\mu$ event in which the muon penetrates both layers of the muon tower. Shown at the Stanford conference, August 1975 (Ref. 37).

Neutrinos: direct detection

The anti-neutrino coming from the nuclear reactor interacts with a proton of the target, giving a positron and a neutron.

$$\overline{v}_e + p \rightarrow e^+ + n$$

The positron annihilates with an electron of target and gives two simultaneous photons ($e^+ + e^- \rightarrow \gamma \gamma$). The neutron slows down before being eventually captured by a cadmium

nucleus, that gives the emission of 2 photons about 15 microseconds after those of the positron.

All those 4 photons are detected and the 15 microseconds identify the "neutrino" interaction. **Reines and Cowan**

The target is made of about 400 liters of water mixed with cadmium chloride

4-fold delayed coincidence

neutrino cross-section and interaction length

http://en.wikipedia.org/wiki/Photomultiplier http://en.wikipedia.org/wiki/Cowan%E2%80%93Reines_neutrino_experiment

The Reines-Cowan experiment observed 3 such coincidences per day.

From the number of neutrinos emitted in the reactor 5×10^{13} neutrinos per second per square centimeter + number of atoms in the detector

What is the interaction length of neutrinos in water (d=1)?

1956 Parity violation in Co beta decay: electron is left-handed (C.S. Wu et al)

1957 Neutrino helicity measurement M. Goldhaber et al Phys.Rev.109(1958)1015

neutrinos have <u>negative helicity</u> (If massless this is the same as left-handed)

$$h = \frac{\vec{s}.\vec{p}}{|\vec{s}|.|\vec{p}|}$$

through magnetic iron

Step V photon detection in NaI cristal

$$^{152}Eu(J=0) + e^{-}(s=1/2) \rightarrow^{152} Sm^{*}(J=1) + v_{e}(s=1/2)$$

Sm* and neutrino have the same helicity photon from Sm* carries that spin too.

Energies

$${}^{152} Eu + e^{-} \rightarrow {}^{152} Sm^{i} + v$$

$$P_{v} = \frac{E^{2} - m^{2}Sm^{i}}{2E} = \frac{(E - m_{Sm^{i}})(E + m_{Sm^{i}})}{2E}$$

$$P_{v} i E - m_{Sm^{i}} = 940 \ keV/c$$

$$Sm * i^{kin} = \frac{P^{2}}{2m_{Sm^{i}}} = 3.12 \ eV$$

$$E_{i}$$

$${}^{152} Sm^{i} \rightarrow {}^{152} Sm + \gamma$$

$$P_{v} \approx m_{Sm^{i}} - m_{Sm} = 961 \ keV/c$$

$$E_{Sm}^{kin} = \frac{P^{2}}{2m_{Sm}} = 3.2 \ eV$$

NB:

velocity =
$$\sqrt{\frac{2 E^{kin}}{m}} = \sqrt{6.4/1.510^{11}} = 610^{-6} c$$

$$\tau = 3 \cdot 10^{-14} \, s \longrightarrow \Gamma = \hbar/\tau = 0,023 \, eV$$

Goldhaber experiment -- STEP II Photon emission

THIS \uparrow is selected by the apparatus

If B is up, then neutrino is right-handed If B is down, neutrino is left handed

Goldhaber Experiment

Goldhaber Experiment

Magnetized iron which can generate a B

Goldhaber experiment -- Summary --

В	Pv	Sν	$\mathbf{h}_{\mathbf{v}}$	STEP I	STEPII	Photon	Magnetic	Detection	Neutrino
				PSm*	$E_{\gamma} > 961?$	nelicity	niter		
+	+	+	+	_		+	+	Consistent	БЦ
			·		YES		(3)	with 0	к-п.
							-		
							(1)		
+	_	+	_	+		_	+	No	R-H.
1.	-	'	-	'	no	-			
							-	No	
									1-H
_	+	_	_	_		_	+	Reduced	L I I.
-	l '	-	-	-	YES	-	(1)		
							-	YES	L-H.
							(3)		
			+	+		+	+	No	L-H.
-	-	-	'		no	'			
							-	No	1-H
									L I I.
	L	L	L				L		

the positive neutrino helicity situation could be detected if it existed but is not. the negative neutrino helicity situation is detected

→The neutrino emitted in K capture is left-handed.

1959 Ray Davis established that

(anti) neutrinos from reactors do not interact with chlorine to produce argon

reactor : $n \rightarrow p e^{-} v_{e}$ or v_{e} ?

these v_e don't do v_e + ${}^{37}CI \rightarrow {}^{37}Ar$ + $e^$ they do this: $\overline{v}_e + p \rightarrow e^+ + n$

they are anti-neutrinos!

Introduce a <u>lepton number</u> which is +1 for e^- and v_e and -1 for e^+ and $\overline{v_e}$

which is observed to be conserved in weak/EM/Strong interactions

Many experiments have since demonstrated that

Only left-handed neutrinos Only right handed anti-neutrinos (= their CP conjugate)

are produced or interact in the weak interaction

The Standard Model works if the neutrinos are massless which allows this situation.

Having massive neutrinos would have consequences beyond the standard model

At least:

- -- new conservation law (generalized 'fermionic' charge conservation)
- -- and surprisingly smaller couplings of neutrinos to the Higgs v.e.v. than other fermions (when the coupling is related to weak isospin and not electric charge)

Neutrinos *the properties*

In 1960, Lee and Yang realized that if a reaction like

 $\mu^{-} \rightarrow e^{-} + \gamma$

is not observed, this is because two types of neutrinos exist v_{μ} and v_{e}

 $\mu^{-} \rightarrow e^{-} + \nu_{\mu} + \nu_{e}$

otherwise $\mu^{-} \rightarrow e^{-} + \nu + \nu$ has the same Quantum numbers as $\mu^{-} \rightarrow e^{-} + \gamma$

Lee and Yang

sketch of a spark chamber for cosmic rays.

For the neutrino detector the scintillators were embedded in the detector

Neutrinos the weak neutral current

Gargamelle Bubble Chamber CERN

Discovery of weak neutral current

 ν_{μ} + e \rightarrow ν_{μ} + e

 ν_{μ} + N \rightarrow ν_{μ} + X (no muon)

previous searches for neutral currents had been performed in particle decays (e.g. K^{0} ->µµ) leading to extremely stringent limits (10⁻⁷ or so)

early neutrino experiments had set their trigger on final state (charged) lepton!

1973 Gargamelle

First manifestation of the Z boson experimental birth of the Standard model

Gargamelle Charged Current event

Gargamelle neutral current event (all particles are identified as hadrons)

The tau neutrino

- -- in 1975 the observation of e+e- \rightarrow e + μ + missing E, P demonstrated the existence of the tau, and indicated V-A decay process.
 - -- decays such as $\tau \rightarrow \pi v_{\tau}$ were observed, demonstrating the existence of a **neutral fermion produced in tau decays**. (MARKI, Perl)
 - -- the tau decay was shown to proceed by V-A interaction (e-mu analysis) also $\tau \rightarrow \rho v_{\tau} \tau \rightarrow K^*(892) v_{\tau} \tau \rightarrow K^*(1430) v_{\tau}$ etc... (MARKII 1980)
 - -- v_{τ} helicity was measured in $\tau \rightarrow A_1 v_{\tau}$ decays to be left handed (Argus 1985)
 - -- and $\nu_\tau\,$ was shown to be different than $\nu_e\,$ or ν_μ as taus were not observed in neutrino beams, and taus do not decay in eq or $\,\mu\gamma$
- -- the Universality of Charged Current $\binom{\tau}{V_{\tau}}$ was demonstrated with tau lifetime measurement and tau branching ratios (LEPI, 1989-1995) (10⁶ tau decays)
- -- tau neutrino mass limits was set to 17 MeV from $\tau \rightarrow 5\pi \nu_{\tau}$ (ALEPH)
- -- finally tau neutrinos were clearly observed as isospin partners of the tau by W → τν_τ decays with a branching fraction of (11.38 ± 0.21)% (LEPII 1996-2000) consistent with W → ev_e W → μv_μ (~4000 WW→ qqτv_τ evts)
- -- the neutral current of the tau neutrino can be inferred from the measurement of the Z decay width into neutrinos (N_v = 2.984+- 0.0082)
- -- in 2000 the DONUT experiment at Fermilab observed the first interactions of the (*by then very well-known*) tau neutrino.

The Third Family of Neutrinos

arXiv:1812.11362

32

sciencephotolibrary

93

24/04/19

The discovery of the third family of neutrinos begins with

Figure 13. The scaled momentum spectrum of leptons from $e\mu$ events in three energy regions. The solid curve represents the expectation of a 1.8 GeV/ c^2 lepton with V-A interactions. The dashed and dot-dashed curves represent the expectations from a 1.8 GeV/ c^2 boson with spin 0 and spin 1, helicity 0, respectively. (From the second

at that time the 'new lepton' was called U

Figure 12. An $e\mu$ event in which the muon penetrates both layers of the muon tower. Shown at the Stanford conference, August 1975 (Ref. 37).

24/04/19

Alain Blondel The third Neutrino Family

Evidence for Anomalous Lepton Production in e^+-e^- Annihilation*

M. L. Perl, G. S. Abrams, A. M. Boyarski, M. Breidenbach, D. D. Briggs, F. Bulos, W. Chinowsky, J. T. Dakin, † G. J. Feldman, C. E. Friedberg, D. Fryberger, G. Goldhaber, G. Hanson, F. B. Heile, B. Jean-Marie, J. A. Kadyk, R. R. Larsen, A. M. Litke, D. Lüke, ↓ B. A. Lulu, V. Lüth, D. Lyon, C. C. Morehouse, J. M. Paterson, F. M. Pierre, § T. P. Pun, P. A. Rapidis, B. Richter, B. Sadoulet, R. F. Schwitters, W. Tanenbaum, G. H. Trilling, F. Vannucci, J. S. Whitaker, F. C. Winkelmann, and J. E. Wiss
Lawrence Berkeley Laboratory and Department of Physics, University of California, Berkeley, California 94720, and Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305 (Received 18 August 1975)
We have found events of the form e⁺ + e⁻ + e⁺ + \mu^{*} + missing energy, in which no other charged particles or photons are detected. Most of these events are detected at or above

a center-of-mass energy of 4 GeV. The missing-energy and missing-momentum spectra require that at least two additional particles be produced in each event. We have no conventional explanation for these events.

The presence of neutrinos was used as a proof that the new particle was a lepton

Volume 63B, number 4

PHYSICS LETTERS

16 August 1976

PROPERTIES OF ANOMALOUS $e\mu$ EVENTS PRODUCED IN e^+e^- ANNIHILATION^{*}

M.L. PERL, G.J. FELDMAN, G.S. ABRAMS, M.S. ALAM, A.M. BOYARSKI, M. BREIDENBACH,
 F. BULOS, W. CHINOWSKY, J. DORFAN, C.E. FRIEDBERG, G. GOLDHABER¹, G. HANSON,
 F.B. HEILE, J.A. JAROS, J.A. KADYK, R.R. LARSEN, A.M. LITKE, D. LÜKE², B.A. LULU,
 V. LÜTH, R.J. MADARAS, C.C. MOREHOUSE³, H.K. NGUYEN⁴, J.M. PATERSON,
 I. PERUZZI⁵, M. PICCOLO⁵, F.M. PIERRE⁶, T.P. PUN, P. RAPIDIS, B. RICHTER,
 B. SADOULET, R.F. SCHWITTERS, W. TANENBAUM, G.H. TRILLING, F. VANNUCCI⁷,
 J.S. WHITAKER and J.E. WISS
 Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305, USA
 and Lawrence Berkeley Laboratory and Department of Physics.

University of California, Berkeley, California 94720, USA

Received 15 July 1976

We present the properties of 105 events of the form $e^+ + e^- \rightarrow e^+ + \mu^{\mp} + \text{missing energy}$, in which no other charged particles or photons are detected. The simplest hypothesis compatible with all the data is that these events come from the production of a pair of heavy leptons, the mass of the lepton being in the range 1.6 to 2.0 GeV/ c^2

When the second paper (Fig. 14) was written the following summer, it continued with a tight argument, which is outlined in Fig. 15. If the decay's were three-body, there were two missing particles in each decay. Could they be K_L 's, photons, or charged particles? By comparing $e\mu$ events with these particles (and using K_S 's as a substitute for K_L 's, since they had to be the same), we could determine an upper limit on the number of anomalous $e\mu$ events which had missing hadrons or photons. This very conservative limit, obtained by adding all of the upper limits linearly, was 39%. Thus, missing particles had to be neutrinos, because that was the only thing left. Thus, each decay, had to have a lepton and two missing neutrinos. The only particle with this signature was a heavy lepton.

Figure 15. Outline of the second paper (Ref. 13).

The name ' τ ' appears in 1977, very carefully chosen

Volume 70B, number 4

PHYSICS LETTERS

24 October 1977

PROPERTIES OF THE PROPOSED τ CHARGED LEPTON*

M.L. PERL. G.J. FELDMAN, G.S. ABRAMS, M.S. ALAM, A.M. BOYARSKI, M. BREIDENBACH,
 J. DORFAN, W. CHINOWSKY, G. GOLDHABER, G. HANSON, J.A. JAROS, J.A. KADYK, D. LÜKE¹,
 V. LÜTH, R.J. MADARAS, H.K. NGUYEN², J.M. PATERSON, I. PERUZZI³, M. PICCOLO³, T.P. PUN
 P.A. RAPIDIS, B. RICHTER, W. TANENBAUM, J.E. WISS

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305, USA and Lawrence Berkeley Laboratory and Department of Physics, University of California, Berkeley, California 94720, USA

Received 17 August 1977

The anomalous $e\mu$ and 2-prong μx events produced in e^+e^- annihilation are used to determine the properties of the proposed τ charged lepton. We find the τ mass is $1.90 \pm 0.10 \text{ GeV}/c^2$; the mass of the associated neutrino, ν_{τ} , is less than 0.6 GeV/ c^2 with 95% confidence; V – A coupling is favored over V + A coupling for the $\tau - \nu_{\tau}$ current; and the leptonic branching ratios are $0.186 \pm 0.010 \pm 0.028$ from the $e\mu$ events and $0.175 \pm 0.027 \pm 0.030$ from the μx events where the first error is statistical and the second is systematic.

it had to be greek, like ' μ ', and τ was chosen for ' $\tau \rho \tau \sigma \nu$ ', third

.. and ' v_{τ} ' just... appears
Measurements of τ cross-section and decays by MarkI, MarkII, DELCO, at SPEAR PLUTO and DASP at DORIS quickly showed that

1.the tau lepton was a spin ½ particle tau pair cross section as muon pair →
1.the tau decays into leptons and two neutrinos and the decay is V-A

2.the tau decays into hadron and one neutrino

e.g. Two body decay $\tau^{-} \rightarrow \pi^{-} \nu_{\tau}$

also ρ , K*, A1, etc... consistent with the weak current

All this implying the existence in tau decays of a spin ½ weakly interacting neutral particle with mass below measurement limit.

This is what we call a 'neutrino'.

Fig. 2. The cross-sections expected for a pair of point-like particles according to several spin assignments. The constants κ , A, B, C and D are related to the gyromagnetic ratio and multipole values of the particles (see Ref. 2 for details). The data points are the DELCO eX events, normalized to the spin $\frac{1}{2}$ curve. Note that the vertical scale changes from linear to logarithmic at 1.0.

A STUDY OF THE DECAY $\tau^- \rightarrow \pi^- \nu_{\tau}^{\diamond}$

C.A. BLOCKER ¹, J.M. DORFAN, G.S. ABRAMS, M.S. ALAM ², A. BLONDEL ³, A.M. BOYARSKI, M. BREIDENBACH, D.L. BURKE, W.C. CARITHERS, W. CHINOWSKY, M.W. COLES ⁴, S. COOPER ⁴, W.E. DIETERLE, J.B. DILLON, J. DORENBOSCH ⁵, M.W. EATON, G.J. FELDMAN, M.E.B. FRANKLIN, G. GIDAL, G. GOLDHABER, G. HANSON, K.G. HAYES ⁵, T. HIMEL ⁵, D.G. HITLIN ⁶, R.J. HOLLEBEEK, W.R. INNES, J.A. JAROS, P. JENNI ⁵, A.D. JOHNSON, J.A. KADYK, A.J. LANKFORD, R.R. LARSEN, M. LEVI ¹, V. LÜTH, R.E. MILLIKAN, M.E. NELSON, C.Y. PANG, J.F. PATRICK, M.L. PERL, B. RICHTER, A. ROUSSARIE, D.L. SCHARRE, R.H. SCHINDLER ⁵, R.F. SCHWITTERS ¹, J.L. SIEGRIST, J. STRAIT, H. TAUREG ⁵, M. TONUTTI ⁷, G.H. TRILLING, E.N. VELLA, R.A. VIDAL, I. VIDEAU ³, J.M. WEISS and H. ZACCONE ⁸

Lawrence Berkeley Laboratory and Department of Physics, University of California, Berkeley, CA 94720, USA and Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94305, USA

Received 19 October 1981

We present a high statistics measurement of the branching ratio for the decay $\tau^- \rightarrow \pi^- \nu_\tau$ using data obtained with the Mark II detector at the SLAC e⁺e⁻ storage ring SPEAR. We have used events from the center-of-mass energy region 3.52 to 6.7 GeV to determine that $B(\tau^- \rightarrow \pi^- \nu_\tau) = 0.117 \pm 0.004 \pm 0.018$. From electron-muon events in the same data sample, we have determined that $B(\tau^- \rightarrow \pi^- \nu_\tau)/B(\tau^- \rightarrow e^- \bar{\nu}_e \nu_\tau) = 0.66 \pm 0.03 \pm 0.11$. We present measurements of the mass and spin of the τ and the mass of the τ neutrino based, for the first time, on a hadronic decay mode of the τ .

Fig. 3. Pion energy spectrum for π -X events with bin-by-bin background subtraction and efficiency corrections. The curves are the expected spectra for $m_{\tau} = 1.782 \text{ GeV}/c^2$, $m_{\nu} = 0$, and $B_{\pi} = 0.117$.

Two body decay $\tau^2 \rightarrow \pi^- v_{\tau}$ with m(v_t)< 250 MeV

The ratio $B(\tau^- \to \pi^- v_{\tau})/B(\tau^- \to e^- \bar{v}_e v_{\tau}) = 0.66 \pm 0.03 \pm 0.11.$

is consistent with the tau being

coupled to the hadronic weak axial-vector current

The question was not whether there was a neutrino produced in tau decays, but whether this neutrino was a new one!

this situation is very similar to that of 1962

OBSERVATION OF HIGH-ENERGY NEUTRINO REACTIONS AND THE EXISTENCE OF TWO KINDS OF NEUTRINOS^{*}

G. Danby, J-M. Gaillard, K. Goulianos, L. M. Lederman, N. Mistry, M. Schwartz,[†] and J. Steinberger[†]

Columbia University, New York, New York and Brookhaven National Laboratory, Upton, New York (Received June 15, 1962)

(1)

In the course of an experiment at the Brookhaven AGS, we have observed the interaction of high-energy neutrinos with matter. These neutrinos were produced primarily as the result of the decay of the pion:

 $\pi^{\pm} \rightarrow \mu^{\pm} + (\nu/\overline{\nu}).$

It is the purpose of this Letter to report some of the results of this experiment including (1) demonstration that the neutrinos we have used produce μ mesons but do not produce electrons, and hence are very likely different from the neutrinos involved in β decay and (2) approximate cross sections.

Behavior of cross section as a function of energy. The Fermi theory of weak interactions which works well at low energies implies a cross section for weak interactions which increases as phase space. Calculation indicates that weak interacting cross sections should be in the neigh-

The question was not whether there was a neutrino produced pion decays, but whether this neutrino was a new one!

24/04/19

Could the $\langle v_{\tau} \rangle$ be different from the weak isospin partner of the tau?

At the same epoch, the b-quark had been discovered, decaying into charm – and not a new third generation quark, because the top quark is heavier than the b quark. As a consequence the b decay is suppressed by the CKM element («mixing angle») V_{cb} and **the b lifetime much longer than would be expected given its mass**.

The same thing could happen with the tau lepton, if for some reason the tau could not decay into its weak isospin partner (by definition ' v_{τ} ').

This hypothesis would imply that i) the tau lifetime would be very long,

and that, because the tau couples to $v_e \& v_u$,

taus could be produced in neutrino beams.

To demonstrate that the tau neutrino was a new particle and the weak isospin partner of the tau one should demonstrate:

1.that the coupling of the tau to its neutrino has the full weak interaction strength

 \rightarrow tau lifetime or W $\rightarrow \tau v_{\tau}$ decay with the same rate as W $\rightarrow e v_{e}$ and W $\rightarrow \mu v_{\mu}$

2. that neither v_e nor v_u couple to the tau.

Gary feldman explained in 1981 that the first measurements of the tau lepton lifetime combined with the absence of tau production in e.g. the CERN neutrino beam dump experiment, excluded this scenario.

SLAC-PUB-2839 October 1981 (T/E)

THE LEPTON SPECTRUM*

Gary J. Feldman Stanford Linear Accelerator Center Stanford University, Stanford, California 94305

DOES THE v_{\pm} EXIST?

We are finally ready to show that the v_{τ} exists independently of a specific theoretical framework. Let us assume that it does not exist. We know from the momentum spectrum of τ decay products that there is an unseen light spin 1/2 particle in the final state. If the v_{τ} does not exist, this must be either the v_{e} or the v_{μ} . Then the τ must couple via the weak current to the linear combination $(\varepsilon_{e}v_{e} + \varepsilon_{\mu}v_{\mu})$, where the ε 's are normalized so that either $\varepsilon = 1$ gives the normal full strength weak coupling. From the absence of excess elections in the final states of v_{μ} interactions,⁴⁰

$$\varepsilon_{\mu}^{2} < 0.025 \text{ at } 90\% \text{ C.L.},$$
 (15)

and from the absence of apparent excess neutral currents in the BEBC beam dump experiment, 41

$$\epsilon_{e}^{2} < 0.35$$
 at 90% C.L. (16)

Combining (15) and (16),

$$\varepsilon_{\mu}^{2} + \varepsilon_{e}^{2} < 0.375 \text{ at } 90\% \text{ C.L.},$$
 (17)

but from either the Mark II or TASSO T lifetime measurement,

$$\varepsilon_{\mu}^{2} + \varepsilon_{e}^{2} > 0.398 \text{ at } 90\% \text{ C.L.}$$
 (18)

reviews the tau decay demonstrating -- the spin of the missing neutral, -- early tau life time meas'ts and the results of a beam dump experiment at CERN

 \rightarrow conclude that the tau neutrino is distinct from nue and numu.

<u>The statistical significance of the</u> <u>argument is still relatively weak.</u>

24/04/19

Alain Blondel The third Neutrino Family

TABLES OF PARTICLE PROPERTIES

April 1982

M. Aguilar-Benitez, R.L. Crawford, R. Frosch, G.P. Gopal, R.E. Hendrick, R.L. Kelly, M.J. Losty, L. Montanet, F.C. Porter, A. Rittenberg, M. Roos, L.D. Roper, T. Shimada, R.E. Shrock, T.G. Trippe, Ch. Walck, C.G. Wohl, G.P. Yost

(Closing date for data: Jan. 1, 1982)

Stable Particle Table

For additional parameters, see Addendum to this table.

Quantities in italics have changed by more than one (old) standard deviation since April 1980.

Particle	I ^G (J ^P)C _n ^a	Mass ^b	Mean life ^b	Partial decay mode			
_		(MeV) Mass ² (GeV ²)	(sec) c7 (cm)	Mode	Fraction ^b	p or p _{max} c (MeV/c)	
			PH	OTON			
γ	0,1(1 ⁻)-	(< 6×10 ⁻²²)		stable	·····	·	
				PTONS			
У_с 24/04/19	$J = \frac{1}{2}$	(< 0.000046) ^d	stable Aldin Billing (Me	stable Mrd Neutrino Family		42	
	- 1						

					*))			
	e	$J = \frac{1}{2}$	0.5110034 ±0.0000014	stable (>2×10 ²² y)	stable			
	ν _μ	$J = \frac{1}{2}$	0(< 0.52)	stable (>1.1×10 ⁵ m $_{\nu_{\mu}}$ (M	stable feV))			
	μ	$J=\frac{1}{2}$	$105.65943 \\ \pm 0.00018 \\ m^2 = 0.01116392$	2.19714×10^{-6} ±0.00007 c7 = 6.5868 × 10 ⁴	$ \begin{array}{c} \mu^{-} \downarrow (\text{or } \mu^{+} \rightarrow \text{CC}) \\ e^{-} \bar{\nu} \nu \\ e^{-} \bar{\nu} \nu \gamma \\ \dagger [e^{-} \nu_{e} \bar{\nu}_{\mu} \\ e^{-} \gamma \end{array} $	(98.6 ± 0.4) $((-1.4) \pm 0.4)$ ((-9) + 0.4) $((-1.9) \pm 0.4)$	4)%)%)%])×10 ⁻¹⁰	53 53 53 53
					c⁻c⁺c⁻ c⁻∽∽	(<1.9 (<5)×10 ⁻⁹)×10 ⁻⁸	53 53
	- <u>v</u> ,	$J = \frac{1}{2}$	< 250			(45)/10	
	τ	$J = \frac{1}{2}$	1784.2 ± 3.2 $m^2=3.18$	$(4.6 \pm 1.9) \times 10^{-13}$ c7 =0.014	$\tau^{-} \neg (\text{or } \tau^{+} \rightarrow CC)$ $\mu^{-} \overline{\nu} \nu$ $e^{-} \overline{\nu} \nu$ hadron - neutrals 2(hadron = $\overline{\lambda}$) controls	(18.5 ± 1.3) (16.2 ± 1.4) (37.0 ± 3.3) (28.4 ± 2.4)	2)% 0)% 2)%	889 892
1982 NB1 t	:: <u>the ta</u> J=1/2 , the life	au neuti m<250 time m	rino is listed as (from πv decay easurement is s	<u>established</u> y) still poor	5(hadron [±]) neutrals 5(hadron [±]) ν 3(hadron [±]) ν $\frac{1}{\pi}\nu$ $\rho^{-}\nu$	(28.4 ± 3.0) (<6 (13 ± 8 (15 ± 7 (10.7 ± 1.0) (21.6 ± 3.0))%)%)%)%] 5)%	887 726
epor (*/ρ r this i	ted. atio is s a tra	consist demark	ent with the Ca of weak decay	bibbo angle).	K [−] neutrals $\pi^{-}\pi^{-}\pi^{+}\nu$ $\pi^{-}\pi^{-}\pi^{+}(\ge 0\pi^{0})\nu$ †[K ^{+−} (1430)ν $\pi^{-}\rho^{0}\nu$	(small (7 \pm 5 (18 \pm 7 (1.7 \pm 0.7 (<0.9 (5.4 \pm 1.7))%)%] 7)%)% 7)%]	864 864 669 316 718
eadir conclution	ng usion: ed.	tau neu	itrino is (mainly) left-	(α	ontinued next pr	ige)	

24/04/19

 μ, ν_{τ}

S83

36 NU-TAU(J=1/2)

EXISTENCE INDIRECTLY ESTABLISHED FROM TAU DECAY DATA COMBINED WITH NU REACTION DATA. SEE FOR EXAMPLE FELDMAN 81. KIRKBY 79 RULES OUT J=3/2 USING TAU --> PI NUTAU BRANCHING RATIO.

NOT IN GENERAL A MASS EIGENSTATE. SEE NOTE ON NEUTRINOS IN THE ELECTRON NEUTRINO SECTION ABOVE.

The existence of the tau neutrino as a J=1/2 quantum state distinct from electron & muon neutrinos is considered <u>established</u> since 1981 (<u>1982 PDG</u>)

Why is it considered 'indirect'?

The detection of the neutral particle from e.g. $\tau \rightarrow \pi \nu$ is perfectly «direct» (in e+e-, the neutrino is well reconstructed from missing energy and momentum). 'Indirect' may refer to the fact that the assignment of lepton flavour is done by default (it is not a nu_e or a nu_mu)

Unfortunately....

→ This note was left unchanged until PDG 2002 although much happened in-between.

SUMMARY TABLES OF PARTICLE PROPERTIES

April 1986

Particle Data Group

M. Aguilar-Benitez, R.M. Barnett, R.L. Crawford, R.A. Eichler, R. Frosch, G.P. Gopal, K.G. Hayes,
 J.J. Hernandez, I. Hinchliffe, G. Höhler, G.R. Lynch, D.M. Manley, L. Montanet, F.C. Porter, J. Primack, A. Rittenberg,
 M. Roos, L.D. Roper, R.H. Schindler, K.R. Schubert, T. Shimada, R.E. Shrock, N.A. Törnqvist, T.G. Trippe,
 W.P. Trower, C.G. Wohl, G.P. Yost, and B. Armstrong and G.S. Wagman (Technical Associates)

(Closing date for data: Dec. 1, 1985) .

Stable Particle Summary Table

(stable under strong decay)

For additional parameters, see Addendum to this table.

Quantities in italics are new or have changed by more than one (old) standard deviation since April 1984

				$\frac{\text{Mean life }^{b}}{\text{F(ac)}}$	Partial decay modes			
	Particle	$I^{G}(J^{PC})^{a}$	(MeV)	τ (sec) cτ (cm)	Mode	Fraction ^b	p (MeV/c) °	
	ν _τ	$J = \frac{1}{2}$	< 70					
	τ	$J = \frac{1}{2}$	1784.2 ± 3.2	$(3.3 \pm 0.4) \times 10^{-13}$ $c \tau = 0.010$	$\tau^- \longrightarrow (\text{or } \tau^+ \rightarrow \text{chg. conj})$ particle ⁻ neutrals $\mu^- \overline{\nu} \nu$ $e^- \overline{\mu} \nu$.) (86.5 ± 0.3)% (17.6 ± 0.6)% (17.4 ± 0.5)%	889	
by 1986 t and cons	he ta istent	u life ti with fi	me is k ull G _F co	known to ±139 oupling)	hadron ⁻ $\geq 0\pi^0 \nu$ hadron ⁻ ν $\pi^- \nu$ $K^- \nu$ hadron ⁻ $\geq 1\pi^0 \mu$	(11.1 ± 0.3) //6 (51.6 ± 0.7) % (10.8 ± 1.1) % (10.1 ± 1.1) % (0.67 ± 0.17) % (40.8 ± 1.3) %	887 824	
	τ ⁻ e ⁻ μ ⁻ μ ⁻ e ⁻	$\downarrow (\text{or } \tau^+ \rightarrow \text{chgd.parts.} \\ \mu^- \text{chgd.part} \\ \gamma \\ \gamma^+ \\ \mu^+ \\ \mu^- \\ \mu^+ \\ \mu^- \\ \mu^+ \\ \mu^- \\ \mu^$	-chg. conj.) rts. (<4) (<5.5) (<6.4) (<4.9) (<3.3)	1% 10^{-4} <i>LF</i> 889 10^{-4} <i>LF</i> 892 10^{-4} <i>LF</i> 876 10^{-4} <i>LF</i> 886	$ \begin{array}{c} \rho \nu \\ \pi^{-}\pi^{0} (\text{non-res.}) \nu \\ \pi^{-}\pi^{0}\pi^{0}\nu \\ \pi^{-}\pi^{0}\pi^{0}\nu \\ K^{-} \ge 1\pi^{0}\nu \\ \pi^{-}\pi^{-}\pi^{+} \ge 0\pi^{0}\nu \\ \pi^{-}\pi^{-}\pi^{+} \ge 1\pi^{0}\nu \end{array} $	$(\begin{array}{cccc} 40.8 \pm 1.3 \\ 0.3 \pm 2.0 \\ 0.3 \pm 0.3 \\ 0.3 \\ 0.3 \pm 0.3 \\ 0.3 \\ 0.5 \\ 0.3 \\ 0.5 \\$	726 881 866 840	
24/04/19	μ_ ε_ μ_ ε_ μ_	$ \begin{array}{c} $	(< 4.4) (< 4.0) (< 8.2) (< 2.1) (< 1.0)	$\times 10^{-4}$ <i>LF</i> 889 $\times 10^{-4}$ <i>LF</i> 892 $\times 10^{-4}$ <i>LF</i> 892 $\times 10^{-4}$ <i>LF</i> 887 $\times 10^{-3}$ <i>LF</i> 887 $\times 10^{-3}$ <i>LF</i> 819	$\pi^{-}\pi^{-}\pi^{+}\nu$ $\pi^{-}\rho^{0}\nu$ third $\pi^{-}\pi^{-}\pi^{+}$ (non-res.) (non-res	$(8.1 \pm 0.7)\% (5.4 \pm 1.7)\% (<1.4)\% (<0.27)\% (<0.6)\%$	865 718 865	

6

45

Limits to $v_{\mu}, v_e \rightarrow v_{\tau}$ Oscillations and $v_{\mu}, v_e \rightarrow \tau^-$ Direct Coupling

VOLU

strongly improved limit in the search for tau neutrino appearance in a beam of muon neutrinos (and 3% v_e), no event seen in 1870 (53) v_{μ} (v_e) and showed that 'most tau decays must contain a neutral lepton other than v_{μ} or v_e '

(Received 19 August 1986)

We have located 3886 neutrino interactions in the fiducial volume of a hybrid emulsion spectrometer installed in the Fermilab wide-band neutrino beam. A search for τ^- decays yielded no candidate, resulting in an upper limit of 0.002 (0.073) for direct coupling of v_{μ} (v_{e}) to τ^- . The v_{μ} (v_{e}) to v_{τ} limits to mass differences and mixing angles (α) between the neutrinos are at maximum mixing $\Delta M^2 < 0.9$ (9.0) eV², and at maximum sensitivity sin²(2 α) < 0.004 (0.12). The direct-coupling limits are also used to show that most τ^- decays must contain a neutral lepton other than v_{μ} or v_{e} .

PACS numbers: 14.60.Gh, 12.15.Ff, 13.10.+q, 13.35.+s

Neutrino oscillations were predicted qualitatively in 1957 as an analog to the $K^0 \cdot \overline{K}^0$ system and later as an explanation for the solar-neutrino problem.¹ After evidence for neutrino oscillations was reported,² numerous experiments searched for oscillations among all neutrino types. Because of problems in the tagging of v_t interactions, few have obtained limits on oscillations into v_t .³⁻⁵ Indirect limits⁶ have also been set by looking for the disapperance of v_{μ} or v_t ; such experiments are more uncertain because they rely more on the knowledge of their neutrino spectrum.

This experiment (E531) was designed to measure the lifetimes of charmed particles produced by the Fermilab neutrino beam and has obtained the lifetimes⁷ of the D^0 , D^{\pm} , F^{\pm} , and Λ_c^+ . Since the τ lepton has a similar lifetime,⁸ it should also be seen in an emulsion target. We have previously published limits³ on ν_{μ} -to ν_{μ} oscillations and direct coupling of ν_{μ} to τ^- ; we now report new limits using new data from a second run of the experiment

charged-current interactions; any decaying particle in these events is unlikely to be τ^- . To remove background from interactions, scattering, and decays of lowmomentum particles, a 2.5-GeV/c momentum cut was applied to the τ candidates. These cuts removed all the decay candidates, as shown in Table I. Overall, 95% of found real τ^- would survive all of the above cuts.

Since there are no candidates left, this corresponds to a 90%-confidence-level (C.L.) limit of 2.3 events.⁸ There are 1870 events with an identified μ^- and an estimated 53 e^- events,¹¹ yielding uncorrected upper limits of $R_{raw}(\mu^-) < 2.3/1870 = 0.0012$ (90% C.L.) and R_{raw} (e^-) < 2.3/53 = 0.043 (90% C.L.), where R is the probability that v_{μ}/v_e oscillates into v_r , or equivalently the relative coupling (direct coupling) of v_{μ}/v_e to τ^- .

Because of differences in v_r , v_{μ} , and v_e interactions, these limits are subject to corrections which depend on the relative cross sections, acceptances, and reconstruction and finding efficiencies: The direct-coupling limits can also be used to indicate that τ^- decays produce v_{τ} . If we use the description of τ^- decay implied by Fig. 3, in which it is assumed that the τ^- couples directly to a neutrino, the semileptonic decay width¹⁶ of the τ^- is given (on the assumption of universal Fermi coupling) by

$$\Gamma(\tau^- \to l^- \bar{\nu}_l \nu_x) = G_F^2 m_\tau^5 / 192\pi^3$$

= 4.132 × 10⁻¹⁰ MeV.

Combining the measured⁸ τ semileptonic branching ratios and lifetime gives an average semileptonic decay width of $(3.5\pm0.5)\times10^{-10}$ MeV, which is consistent with the above calculation.

current τ lifetime expressed in MeV!

$$\Gamma(\tau^- \to l^- \bar{\nu}_l \nu_e / \nu_\mu) = G_F G'_F m_\tau^5 / 192\pi^3,$$

where $G'_F = G_F R(e^-/\mu^-)$. This yields the following upper limits (90% C.L.) for the semileptonic decay width, on the assumption of this direct coupling:

$$\Gamma(\tau^- \to l^- \bar{\nu}_l \nu_\mu) < 8.3 \times 10^{-13} \text{ MeV},$$

$$\Gamma(\tau^- \to l^- \bar{\nu}_l \nu_e) < 3.0 \times 10^{-11} \text{ MeV},$$

as compared with the experimental average of $(3.5 \pm 0.5) \times 10^{-10}$ MeV mentioned above.¹⁸ Thus, direct coupling to v_e and v_{μ} cannot dominate the τ -decay diagram shown in Fig. 3, indicating that the τ decays into something else, most likely the v_{τ} .¹⁹

this now is about 8 σ exclusion for either v_{μ} and v_{e} , or the sum

Comment:

the hypothesis that e.g. $\tau \rightarrow \pi \nu_e$ or ν_u in part or in total was not absurd:

- this could happen if the third family neutrino (e.g. v₃) would be heavier than the tau lepton itself. In that case the mixing of mass eigenstates with the weak eigenstates would lead to a decay into a v₁ v₂ combination.
 The lifetime of the tau would be longer than that calculated using V-A theory for a massless neutrino.
- -- this is what happens for quarks: the b quark does not decay into top (which is too heavy) so it decays into c and u quarks, and indeed the life time of the b was found to be considerably longer than expected for a particle of this mass. NB these measurements were contemporary to those of the tau lifetime.

Consequently the fact that the tau decays into (and thus couples to) a [left-handed, spin $\frac{1}{2}$ particle consistent with being massless] was established without any doubt. Still it could be a mix of v_e or v_{μ} . This was excluded by neutrino experiments proving that no tau production was seen in the (v_{μ} / v_e) beams -- up to very small fractions. Combined with the measurement of the tau lifetime consistent with that predicted from the muon life-time, **this establishes the neutral particle observed in tau decays is the** v_{τ} (weak isospin partner of the tau lepton), which was listed as «established particle» as of PDG 1982.

by <u>1986</u> the tau neutrino was solidly known and established

The demonstration required putting together several informations

-- tau decays

-- tau lifetime

-- negative result from neutrino interactions

and... writing a few equations.

several (mostly neutrino-) physicists continued to request that one should 'directly' observe the tau neutrino interaction with matter to be convinced.

(not realizing that the observation of $\tau^- \to \pi^- \ll v_\tau$ » implies that if one can make a beam of $\ll v_\tau$ » one will certainly see τ s appear, also if the $\ll v_\tau$ » is a combination/superposition of v_u or v_e !)

I conclude that the difference between direct and indirect is related to how many equations good understanding requires.

Indirect requires > 1 equation, direct 0 or 1.

A scientific organization like PDG should prefer to refrain from using these subjective words.

Does the tau-neutrino exist as a particle? Surprisingly, this question cannot be answered by yes or no. Its existence can be proved by direct observation of the charged current reaction

24/04/19

 ν_{A} and the third Neutrino Family

K. Winter 1991 -- ??? – no ref. to elaborate⁴⁹model The quarks and leptons observed so far can be organized into three families (or generations) of weak isodoublets (for left-handed states), as follows:

u	c	t	quark doublets
d′	s′	b′	quark doublets
ν _e	$ u_{\mu}$	ν_{τ}	lenton doublets
e	μ	τ	lepton doublets

Each leptonic doublet contains a distinct type of neutrino, labelled ν_e , ν_{μ} , and ν_{τ} . One of the basic questions is, Are there more families than the three observed so far? In view of the regularity prevailing in the first three generations, counting the number of neutrino types may also mean counting the number of fundamental fermion generations.

Until now, the direct detection of neutrinos has been achieved only for the neutrinos ν_e and ν_{μ} . The third generation ν_{τ} has not yet been detected directly through its characteristic interactions with matter. The evidence for ν_{τ} as an independent species, with the same (universal) Fermi coupling to its third-generation charged-lepton partner τ as is the case for the two lighter generations, is indirect. It is obtained from the τ lifetime (Hitlin, 1987; Braunschweig et al., 1988), or from the tests of $e^{-\mu-\tau}$ universality based on the W partial production cross-section ratios $\sigma(W \to e\nu)/\sigma(W \to \mu\nu)/\sigma(W \to \tau\nu)$ measured at the SPS Collider by the UA1 Collaboration (Albajar et al., 1987a). Whilst the τ lifetime

tests the hypothesis of universality of weak charged currents at a low $Q^2 \le m_7^2$, the Collider results test it at $Q^2 \approx m_W^2$.

Denegri, Sadoulet and Spiro «The number of neutrino species» (1989) (an excellent paper!) AB -- note that the argument is incomplete (the observations in tau decays and meutrino beam observations are missing) 50

In 1985 the observation of the W decay $W \rightarrow \tau v_{\tau}$ was reported.

5. EXPERIMENTAL EVIDENCE FOR THE HEAVY LEPTON DECAY W $\rightarrow \tau_V$

With the observation of the $W \rightarrow \tau v$ decay, the 'programme' on the leptonic decay channels of the IVB is complete.

In the case of a W $\rightarrow \tau v$ event where the τ decays in the hadronic mode, what we measure is a jet including charged tracks and the corresponding en-- " decay observed, -use recorded that a tau neutrino is observed. -use ergy deposition in some calorimeter cells (both hadronic and electromagnetic).

track of a hadronic type and some missing transverse energy. In this sense,

by 1987 the CC coupling of the tau is established to equal that of the electron to 20%

++ Mass not restricted to VV mass.

$\Gamma(\tau^+\nu)/\Gamma(e^+\nu)$					Γ ₅ /Γ ₁	
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	
$1.02 \pm 0.20 \pm 0.12$	32	ALBAJAR	89	UA1	E m = 546,630 GeV	1
• • • We do not use	the following	data for averag	es, fits	, limits,	. etc. • • •	
$1.02 \pm 0.20 \pm 0.10$	32	ALBAJAR	87	UA1	Repl. by ALBAJAR 89	

W decay is precisely what we use to define the neutrino flavours.

e.g. B. Kayser, VIIth Pontecorvo School, 2017

The Neutrino Flavors

There are three flavors of charged leptons: e , $\,\mu$, $\,\tau$

There are three known flavors of neutrinos: v_e, v_μ, v_τ

We *define* the neutrinos of specific flavor, v_e , v_{μ} , v_{τ} , by W boson decays:

the existence of the three W decay modes with <u>similar branching</u> ratios establishes the tau and its neutrino as a new sequential heavy lepton doublet

kinematic reconstruction of two tau neutrinos

Observation of tau-neutrino in ALEPH at LEP (183 GeV E_{cm})

LEP saw several 1000's of those in the 90's.

 $e + e_{\overrightarrow{\text{Arain Blondel The third Neutrino Particle}} + \tau^{-} \nu_{\tau}$

in the 1990s

-- experiments at LEP observed 100'000s of tau pairs and several 10000's of W pairs from which the charged current coupling τ - v_{τ} was measured, universality tests at few permil performed in tau decays and at percent level in W decays.

-- the tau neutrino helicity was determined (ARGUS first)

$$\tau_{\tau} = 290.1 \pm 1.5 \,(\text{stat}) \pm 1.1 \,(\text{syst}) \,\text{fs},$$
(7)

with $\chi^2 = 9.1$ for 15 degrees of freedom (CL = 87%). This result, the most precise measurement of the mean τ lifetime, is consistent with other recent measurements [18].

The ALEPH measurements of the τ lifetime and branching fractions may be used to test lepton universality. For $B(\tau \to e\nu\bar{\nu}) = (17.79 \pm 0.12 \pm 0.06)\%$ [15], $B(\tau \to \mu\nu\bar{\nu}) = (17.31\pm0.11\pm0.05)\%$ [15], and other quantities from [5], the ratios of the effective coupling constants [19] are

$$\frac{g_{\tau}}{g_{\mu}} = 1.0004 \pm 0.0032 \pm 0.0038 \pm 0.0005 \tag{8}$$

and

$$\frac{g_{\tau}}{g_e} = 1.0007 \pm 0.0032 \pm 0.0035 \pm 0.0005, \tag{9}$$

where the first uncertainty is from the τ lifetime, the second is from the τ leptonic branching fraction $(B(\tau \rightarrow e\nu\bar{\nu})$ in Eq. 8 and $B(\tau \rightarrow \mu\nu\bar{\nu})$ in Eq. 9), and the third is from the τ mass. The measured ratios are consistent with the hypothesis of lepton universality.

Observation of Tau Neutrino Interactions

DONUT Collaboration K. Kodama¹, N. Ushida¹, C. Andreopoulos², N. Saoulidou², G. Tzanakos², P. Yager³, B. Baller⁴, D. Boehnlein⁴, W. Freeman⁴, B. Lundberg⁴, J. Morfin⁴, R. Rameika⁴, J.C. Yun⁴, J.S. Song⁵, C.S. Yoon⁵, S.H.Chung⁵, P. Berghaus⁶, M. Kubanstev⁶, N.W. Reav⁶, R. Sidwell⁶, N. Stanton⁶, S. Yoshida⁶, S. Aoki⁷, T. Hara⁷, J.T. Rhee⁸, D. Ciampa⁹, C. Erickson⁹, M. Graham⁹, K. Heller⁹, R. Rusack⁹, R. Schwienhorst⁹, J. Sielaff⁹, J. Trammell⁹, J. Wilcox⁹ K. Hoshino¹⁰, H. Jiko¹⁰, M. Miyanishi¹⁰, M. Komatsu¹⁰, M. Nakamura¹⁰. T. Nakano¹⁰, K. Niwa¹⁰, N. Nonaka¹⁰, K. Okada¹⁰ O. Sato¹⁰, T. Akdogan¹¹, V. Paolone¹¹, C. Rosenfeld A. Kulik^{11,12}, T. Kafka¹³, W. Oliver¹³, T. Patzak¹³, J. Schr ¹ Aichi University of Education, Kariya, Japan ² University of Athens, Greece ³ University of California/Davis, Davis, California ⁴ Fermilab, Batavia, Illinois 60510 ⁵ Gyeongsang University, Chinju, Korea ⁶ Kansas State University, Manhattan, Kansas ⁷ Kobe University, Kobe, Japan ⁸ Kon-kuk University, Korea ⁹ University of Minnesota, Minnesota ¹⁰ Nagoya University, Nagoya 464-8602, Japan ¹¹ University of Pittsburgh, Pittsburgh, Pennsylvania 15260 ¹² University of South Carolina, Columbia, South Carolina ¹³ Tufts University, Medford, Massachusetts 02155

December 14, 2000

Beautiful observation of neutrino interations producing taus!

there is 'small print'...

Observation of Tau Neutrino Interactions **DONUT**

Tau Neutrino interaction in DONUT experiment (Fermilab) 2000 Alain Blondel The third Neutrino Family 57

The neutrino beam was created using 800 GeV protons from the Fermilab Tevatron interacting in a meter long tungsten beam dump, which was 36 m upstream from the emulsion target. Most of the neutrinos that interacted in the emulsion target originated in the decays of charmed mesons in the beam dump. The primary source of ν_{τ} is the leptonic decay of a D_S meson into τ and $\overline{\nu}_{\tau}$, and the subsequent decay of the τ to a ν_{τ} . All other sources of ν_{τ} are estimated to have contributed an additional 15%. $(5 \pm 1)\%$ of all neutrino interactions detected in the emulsion were predicted to be from ν_{τ} with the dominant uncertainty from charm production and $D_S \rightarrow \tau \nu$ branching ratio measurements[4]. The mean energies of the detected neutrino interactions were calculated to be 89 GeV, 69 GeV, and 111 GeV, for ν_e , ν_{μ} , and ν_{τ} respectively.

It should be noted that since the neutrino flux had only an estimated 5% ν_{τ} component, the possibility that the ν_{τ} is a superposition of ν_e and ν_{μ} cannot be eliminated using the results of this experiment. Results from other experiments [9] [10] [11], which were sensitive to τ leptons, show that the direct coupling of ν_{μ} to τ is very small (2×10^{-4}) . The upper limit (90% CL) for ν_e to τ is much larger, 1.1×10^{-2} (90% CL). Assuming this upper limit, the estimated number of τ events from this hypothetical source is 0.27 ± 0.09 (90% CL). [9] E531 Collaboration, N. Ushida et al., Phys. Rev. Lett. 57, 2897 (1986).

[10] CHORUS Collaboration, E. Eskut *et al.*, Nucl. Phys. A663, 807 (2000).

[11] NOMAD Collaboration, P. Astier *et al.*, Phys. Lett. **B483**, 387 (2000).

this is very different from the 1962 experiment in which neutrinos from pion decay are >99% muon neutrings a Blondel The third Neutrino Family

Are there more families of neutrinos?

the SM can accommodate more families of quarks and leptons and in the 70/80's this was a question of great importance for nucleosynthesis and cosmology

The construction of LEP was decided by CERN council in 1981, **before** the W and Z were observed at the proton-antiproton collider! Construction started in 1983. A big scare of the time was the **number of neutrinos**

LEP was on mission to find out!

the appearance of a word

PROCEEDINGS OF THE LEP SUMMER STUDY

Les Houches and CERN 10-22 September 1978

CERN 79-01 Volume 2 14 February 1979

we find the formulae that we all know and love....

(...)

For an arbitrary Z^o, the formulae (1) and (2) correspond to decay widths

$$\Gamma(Z^{o} \rightarrow f\bar{f}) \approx \frac{G_{F}m_{Z}^{3}}{24 \sqrt{2\pi}} (v_{f}^{2} + a_{f}^{2}) \qquad \textbf{no} \rho ! \qquad (14)$$

for $m_f \ll m_Z/2$. For the favoured range of values of m_Z and v_f , a_f of order unity, equation (14) implies that $\Gamma(Z^0 \rightarrow f\bar{f}) = 0(100)$ MeV. Including 3 generations of fermions one would therefore expect a total Z^0 decay width

$$\Gamma(Z^{O} \rightarrow a11) = O(2 \text{ to } 3) \text{ GeV}$$
 (15)

and a little drama...

3. Determining the Fermion Spectrum

disappearance of the Z boson?

The above results are encouraging, in the sense that the Z^O peak is large and dramatic, as long as there are not too many generations of fermions. Is it conceivable that there might be so many fermions as to wash out the Z^O peak?

build LEP and find no Z! (imagine to build LHC and find no Higgs, huh?)

ALEPH

LEP / LHC Layout

The 26.7 km LEP / LHC tunnel

OPAL

SPS

Lake Geneva

DELPHI

Depth: 70-140 m

LEP / LHC

BEFORE LEP STARTED

CERN-EP/89-72 LBL 26014 DPhPE 88-12 6 June 1989

THE NUMBER OF NEUTRINO SPECIES

D. Denegri, CERN, Geneva, Switzerland and DPHPE, CEN-Saclay, Gif-sur-Yvette, France

B. Sadoulet, Center for Particle Astrophysics, Department of Physics and Lawrence Berkeley Laboratory, University of California, Berkeley, USA

M. Spiro, DPhPE, CEN-Saclay, Gif-sur-Yvette, France

1989

 $\frac{CDF \text{ collab. rec } 19 \text{ July}}{Phys \text{ Rew. left. } 63(1989) 720} M_Z = 90.9 \pm 0.3 \pm 0.2 \text{ GeV}$ $\frac{MARK II \text{ coll } SLC}{Phys \text{ Rew } Left } \frac{MZ}{SLC} \text{ rec. } 24 \text{ July} \quad M_Z = 91.11 \pm 0.23 \text{ GeV}$ $\frac{MARK II \text{ coll } SLC}{Phys \text{ Rew } Left } \frac{1989}{724} \text{ Ny} = 3.8 \pm 1.4$ $Phys \text{ Rew } Left \\ 63(1989) 2173 \quad M_Z = 91.114 \pm 0.12$ $\frac{MZ}{MZ} = 91.14 \pm 0.12$ $\frac{MZ}{MZ} = 2.8 \pm 0.6 \quad 3.9 \\ 295\% CL$

We discuss the methods used to determine the number of neutrino species N_{ν} , or an upper limit on this number, within the framework of the Standard Model. The astrophysical limit based on the neutrino burst from SN1987A is discussed first. Next we proceed with the discussion of the cosmological constraint based on the observed He/H abundance ratio. Finally, we discuss the particle physics methods based on single-photon production in e^+e^- collisions, on the production of monojets in $p\bar{p}$ collisions, and on the determination of N_{ν} from the ratio of the $W \rightarrow \ell \bar{\nu}$ to $Z \rightarrow \ell \bar{\ell}$ partial cross-sections in pp collisions. The various sources of uncertainty and the experimental backgrounds are presented, as well as an idea of what may be expected on this subject in the future. There is remarkable agreement between the various methods, with central values for N_{ν} between 2 and 3 and with upper limits $N_{\nu} < 6$. The consistency between the laboratory determinations of N_{ν} and those from the supernova SN1987A or cosmology represents an astounding success for the Standard Model and for the current description of stellar collapse and of the Big Bang primordial nucleosynthesis. Combining all determinations, we obtain a central value $N_{\nu} = 2.1 \stackrel{+0.6}{_{-0.4}}$ for $m_t =$ 50 GeV and $N_{\nu} = 2.0^{+0.6}_{-0.4}$ if $m_t \ge m_W$. At present, $N_{\nu} = 3$ is perfectly compatible with all data. Although the consistency is significantly worse, four families still provide a reasonable fit. In the framework of the Standard Model, a fifth light neutrino is, however, unlikely.

2

ne Z width would be made of 1.7 GeV for quarks, 84 MeV for each of 3 leptons and 70 for each neutrino.

ne more neutrino would increase the total width by 7% over the known 3 neutrinos. rst studies (AB et al) elaborated a 10 point scan measuring the muon cross-section for a wl ear to get a precision of about 20 MeV on the Z width, showing little understanding of the roblem

A closer look at a line shape in 1987 revealed that the sensitivity comes almost entirely from the peak cross-section...

and that hadron measurements would be quicke

G. Feldman put this all down in equations in the MarkII physics workshop in February 1987.

$$\sigma_{\mu\mu} = \frac{12\pi}{m_{Z}^{2}} \frac{\Gamma_{ee}\Gamma_{\mu\mu}}{\Gamma_{tot}^{2}} \qquad \sigma_{hetd} = \frac{12\pi}{m_{Z}^{2}} \frac{\Gamma_{ee}\Gamma_{hetd}}{\Gamma_{tot}^{2}}$$
enhancement

	NZ	$\Delta\Gamma_{invis}$, Eq. (11) (MeV)	$\Delta\Gamma_{tot}$, Eq. (12) (MeV)	$\Delta\Gamma_{tot}$, Direct Meas. (MeV)
	500	142	215	248
	1000	105	156	175
	20 00	81	115	124
	5000	62	82	78
e	LILAPOOF	amily 54	67	5 \$5

e third Neutrino Family

and there were only three neutrinos W.A. : 3.11±0.16

68

$$N_{\nu} = 3.27 \pm 0.30. \tag{5}$$

The hypothesis $N_{\nu} = 4$ is ruled out at 98% confidence level. This measurement improves in a decisive way upon previous determinations of the number of neutrino species from the UA1 [16] and UA2 [17] experiments, from PEP [18] and PETRA [19], from cosmological [20] or astrophysical [21] arguments, as well as from a similar determination at the Z peak [22].

The demonstration that there is a third neutrino confirms that the τ neutrino is distinct from the *e* and μ neutrinos. The absence of a fourth light neutrino indicates that the quark-lepton families are closed with the three which are already known, except for the possibility that higher order families have neutrinos with masses in excess of ~ 30GeV.

ALEPH collaboration 'determination of the number of light neutrino species' **Physics Letters B Volume 231, Issue 4**, 16 November 1989, Pages 519-529

by 1989 (and before the measurement at LEP) the first three families of neutrinos ($v_e \cdot v_\mu \cdot v_\tau$) were «already known»

At the end of LEP: Phys.Rept.427:257-454,2006

 $N_v = 2.984 \pm 0.008$

This is determined from the Z line shape scan and dominated by the measurement of the hadronic cross-section at the Z peak maximum →

The dominant systematic error is the theoretical uncertainty on the Bhabha cross-section (0.06%) which represents an error of ± 0.0046 on N_v

Improving on N_v by more than a factor 2 would require a large effort to improve on the Bhabha cross-section calculation!

Observation of tau-neutrino in ALEPH at LEP (183 GeV E_{cm}) e+e- \rightarrow W+ W- \rightarrow (hadrons)⁺ + $\tau^{-} \nu_{\tau}$

Observation of Tau Neutrino Interactions

DONUT Collaboration K. Kodama¹, N. Ushida¹, C. Andreopoulos², N. Saoulidou², G. Tzanakos², P. Yager³, B. Baller⁴, D. Boehnlein⁴, W. Freeman⁴, B. Lundberg⁴, J. Morfin⁴, R. Rameika⁴, J.C. Yun⁴, J.S. Song⁵, C.S. Yoon⁵, S.H.Chung⁵, P. Berghaus⁶, M. Kubanstev⁶, N.W. Reay⁶, R. Sidwell⁶, N. Stanton⁶, S. Yoshida⁶, S. Aoki⁷, T. Hara⁷, J.T. Rhee⁸, D. Ciampa⁹, C. Erickson⁹, M. Graham⁹, K. Heller⁹, R. Rusack⁹, R. Schwienhorst⁹, J. Sielaff⁹, J. Trammell⁹, J. Wilcox⁹ K. Hoshino¹⁰, H. Jiko¹⁰, M. Miyanishi¹⁰, M. Komatsu¹⁰, M. Nakamura¹⁰, T. Nakano¹⁰, K. Niwa¹⁰, N. Nonaka¹⁰, K. Okada¹⁰ O. Sato¹⁰, T. Akdogan¹¹, V. Paolone¹¹, C. Rosenfeld A. Kulik^{11,12}, T. Kafka¹³, W. Oliver¹³, T. Patzak¹³, J. Schr ¹ Aichi University of Education, Kariya, Japan ² University of Athens, Greece ³ University of California/Davis, Davis, California ⁴ Fermilab, Batavia, Illinois 60510 ⁵ Gyeongsang University, Chinju, Korea ⁶ Kansas State University, Manhattan, Kansas ⁷ Kobe University, Kobe, Japan ⁸ Kon-kuk University, Korea ⁹ University of Minnesota, Minnesota ¹⁰ Nagoya University, Nagoya 464-8602, Japan ¹¹ University of Pittsburgh, Pittsburgh, Pennsylvania 15260 ¹² University of South Carolina, Columbia, South Carolina ¹³ Tufts University, Medford, Massachusetts 02155

December 14, 2000

Tau Neutrino interaction in DONUT experiment (Fermilab) 2000
Observation of Tau Neutrino Interactions

DONUT Collaboration

The **DONUT** experiment

Phys. Lett., B504:218–224, 2001 + Phys. Rev., D78:052002, 2008.

800 GeV protons from Fermilab Tevatron

beam dump suppresses π and K decays, spoiler magnet sweeps muons away result is a beam with 5% tau neutrinos from mainly $D_s \rightarrow \tau v_{\tau}$

Emulsions combined with scintillators and spectrometer facilitate the search for events.

first paper

Neutrino Interactions

Proton path

Neutrino transformed into μ-meson

The 'Neutrino Event'

Nov. 13, 1970 — World's first observation of a neutrino in a hydrogen bubble chamber

Collision creates π-meson Invisible neutrino collides with proton

ND280 off-axis neutrino events

Neutrino cross-sections

at all energies NC reactions (Z exchange) are possible for all neutrinos

medium energy (50<E<700 MeV) quasi elastic reaction on protons or neutrons \underline{v}_{e} + n--> e⁻ + p or v_{e} + p --> e⁺ + n

Threshold for muon reaction 110 MeV Threshold for tau reaction 3.5 GeV

above 700 MeV pion production becomes abundant and above a few GeV inelastic (diffusion on quark folloed by fragmentation) dominates

Quasielastic scattering off electrons ("Leptons and quarks" L.B.Oku

S

Total cross section

$$s = \frac{2G_F^2}{p} \frac{\left(s - m_m^2\right)^2 \left(E_e E_m + \frac{1}{3}E_{v1} E_{m2}\right)}{s^2}$$

At high energies interactions on quarks dominate: **DIS regime: neutrinos on (valence) quarks** x = fraction of longitudinal momentum carried by struck quark $y = (1 - \cos \theta)/2$ for J=0 isotropic distribution d(x) = probability density of quark d with mom. fraction x neglect all masses! J=0 $s = xS = 2mE_yx$ d u р U multi-hadron system dσ xS d(x)dxwith the right quantum number

Neutral Currents

electroweak theory

CC: $g = e/sin\theta_w$ NC: $g'=e/sin\theta_w cos\theta_w$

NC fermion coupling = $g'(I^3 - Qsin\theta_w)$

I³= weak isospin = +1/2 for Left handed neutrinos & u-quarks, -1/2 for Left handed electrons muons taus, d-quarks 0 for right handed leptons and quarks

Q= electric charge θ_w = weak mixing angle. $g_L^u = 1/2 - 2/3 \sin \theta_w$

 $g_R^u = -2/3 \sin \theta_W$

(sum over quarks and antiquarks as appropriate)

the parameter ρ can be calculated by remembering that for these cross sections we have the W (resp Z) propagator, and that the CC/NC coupling is in the ratio $\cos\theta_w$

thus $\rho^2 = m_w^4 (m_z^4 \cos \theta_w) = 1$ at tree level in the SM, but is affected by radiative corrections sensitive to e.g. m_{top}

scattering of v_{μ} on electrons: (invert the role of R and L for antineutrino scattering)

the scattering of electron neutrinos off electrons is a little more complicated (W exchange diagram)

Total neutrino – nucleon CC cross sections

(A. Ankowski)

Neutrino mysteries

- **I.** Neutrinos have mass (we know this from oscillations, see later...)
- 2. neutrinos are massless or nearly so (while m_e=5.10⁵eV/c², m_{top}=1.7 10¹¹eV/c²) mass limit of 2.2eV/c² from beta decay mass limit of <~ 1 eV/c² from large scale structure of the universe
- B. neutrinos appear in a single helicity (or chirality?) but of course weak interaction only couples to left-handed particles and neutrinos have no other known interaction... So... even if right handed neutrinos existed, they would neither be produced nor be detected!
- 4. if they are not massless why are the masses so different from those of other quark and leptons?
- 5. 3 families are necessary for CP violation, but why only 3 families?

....

Neutrinos *astrophysical neutrinos*

Ray Davis

since ~1968

Homestake Detector

Solar Neutrino Detection 600 tons of chlorine. Detected neutrinos E> 1MeV

fusion process in the sun

solar : pp \rightarrow pn $e^+ \nu_e$ (then D gives He etc...)

these $v_e \stackrel{\text{do}}{=} v_e + {}^{37}\text{Cl} \rightarrow {}^{37}\text{Ar} + e^{-1}$

they are neutrinos

• The rate of neutrinos detected is three times less than predicted!

solar neutrino 'puzzle' since 1968-1975!

solution: 1) solar nuclear model is wrong or 2) neutrino oscillate

v_e solar neutrinos

S.N.U. = Solar Neutrino Unit (electron-) neutrino flux producing 10⁻³⁶ captures per target atom per second

Generalities on radiochemical experiments

	Data used for R determin ation	N runs	Average efficiency	Hot che m chec k	Sourc e calib	R _{ex} [SNU] expected (no osc)
Chlorine (Homestake Mine);South Dakota USA	1970- 1993	106	0.958 ± 0.007	³⁶ Cl	No	2.55 ± 0.17 ± 0.18 6.6% 7% 2.6 ± 0.3 8.5+-1.8
GALLEX / GNO LNGS Italy	1991- 2003	124		³⁷ As	Yes twice ⁵¹ Cr source	69.3 ± 4.1 ± 3.6 5.9% 131 ⁵ *-11
SAGE Baksan Kabardino Balkaria	1990- ongoing	104		No	Yes ⁵¹ Cr ³⁷ Ar	70.5 ± 4.8 ± 3.7 6.8% 5.2% 70.5 ± 6.0 131+-11

Super-K detector

Water Cerenkov detector 50000 tons of pure light water ≈10000 PMTs

Missing Solar Neutrinos Only fraction of the expected flux is measured !

Possible explications:

wrong SSM NO. Helio-seismology wrong experiments NO. Agreement between different techniques

or

 v_e 's go into something else Oscillations?

Total Rates: Standard Model vs. Experiment Bahcall-Pinsonneault 98

neutrino definitions

the **electron** neutrino is present in association with an **electron** (e.g. beta decay)

the **muon** neutrino is present in association with a **muon** (pion decay)

the tau neutrino is present in association with a tau $(W \rightarrow \tau \nu \ decay)$

these flavor-neutrinos are not (as we know now) quantum states of well defined **MASS** (neutrino mixing)

the mass-neutrino with the highest electron neutrino content is called v_1

the mass-neutrino with the next-to-highest electron neutrino content is V₂

the mass-neutrino with the smallest electron neutrino content is called v_3

Pontecorvo 1957

 β is noted U_{2u}

 γ is noted $U_{3\mu}$ etc....

Oscillation Probability

where L = distance between source and detector E = neutrino energy

Hamiltonian= $E = sqrt(p^2 + m^2) = p + m^2/2p$ for a given momentum, eigenstate of propagation in free space are the mass eigenstates!

On traitera d'abord un système à deux neutrinos pour simplifier

Propagation dans le vide: on écrit le Hamiltonien pour une particule relativiste (NB il y a là une certaine incohérence car la mécanique quantique relativiste utilise des méthodes différentes. Dans ce cas particulièrement simple les résultats sont les mêmes.)

E/c P_x P_y P_z i righ

i i i (i)(i)(i)i

On se rappellera du 4-vecteur relativiste Energie Impulsion

Dont la norme est par définition la masse (invariant relativiste) et s'écrit

(mc²)² = E² - (pc)²
D'ou l'énergie:
$$E = \sqrt{(pc)^2 + (mc^2)^2} \gg pc(1 + \frac{(mc^2)^2}{2(pc)^2}) = pc + \frac{m^2c^4}{2pc}$$

On considère pour simplifier encore le <u>cas</u> de <u>neutrinos</u> <u>dont la</u> quantité de mouvement est connue ce qui fait que le Hamiltonien va s'écrire ainsi dans la base-des états de masse bien définie:

Pour le cas de deux neutrinos, dans la base des états de masse bien définie:

L'evolution dans le temps des états propres $|v_1\rangle$ et $|v_2\rangle$ s'écrit:

$$|\mathbf{v}_{1}(t)\rangle = |\mathbf{v}_{1}\rangle e^{iE_{1}t/h}$$
 $|\mathbf{v}_{2}(t)\rangle = |\mathbf{v}_{2}\rangle e^{iE_{2}t/h}$

Cependant les neutrinos de saveur bien définie sont des vecteurs orthogonaux de ce sous espace de Hilbert à deux dimensions, mais différents des neutrinos de masse bien définie: $|v_e\rangle = |v_m\rangle$

Si nous partons maintenant au niveau de la source (t=0) avc un état $|v_e\rangle$

et que nous allons détecter des neutrinos à une distance L (soit à un temps L/c plus tard) la probabilité Quand on observe une interaction de neutrino d'observer une interaction produisant un electron ou un muon seront donnés par le calcul de

 $P_{e}(|v_{e}(t)\rangle) = ||\langle v_{e}|v_{e}(t)\rangle||^{2}$ $P_{m}(|v_{e}(t)\rangle) = ||\langle v_{m}|v_{e}(t)\rangle||^{2}$

 $P_e(|v_e(t)\rangle) = ||\langle v_e|v_e(t)\rangle||^2 = ||\cos q \langle v_e|v_1\rangle + \sin q \langle v_e|v_2\rangle e^{i(E_2 - E_1)t/h}||^2$ $P_e(|v_e(t)\rangle) = (\cos^2 q + \sin^2 q e^{-i(E_2 - E_1)t/h})(\cos^2 q + \sin^2 q e^{+i(E_2 - E_1)t/h})$

$$\begin{split} &P_{e}(|v_{e}(t)\rangle) = \|\langle v_{e}(t)\rangle\|^{2} = \|\cos q \langle v_{e}|v_{1}\rangle + \sin q \langle v_{e}|v_{2}\rangle e^{i(E_{2}-E_{1})t/h}\|^{2} \\ &P_{e}(|v_{e}(t)\rangle) = (\cos^{2}q + \sin^{2}q e^{-i(E_{2}-E_{1})t/h})(\cos^{2}q + \sin^{2}q e^{+i(E_{2}-E_{1})t/h}) \\ &P_{e}(|v_{e}(t)\rangle) = \cos^{4}q + \sin^{4}q + \cos^{2}q \sin^{2}q (e^{+i(E_{2}-E_{1})t/h} + e^{-i(E_{2}-E_{1})t/h})) \\ &P_{e}(|v_{e}(t)\rangle) = \cos^{4}q + \sin^{4}q + \cos^{2}q \sin^{2}q - 2\cos^{2}q \sin^{2}q (1 - \cos(E_{2}-E_{1})t/h)) \\ &P_{e}(|v_{e}(t)\rangle) = \cos^{4}q + \sin^{4}q + 2\cos^{2}q \sin^{2}q - 2\cos^{2}q \sin^{2}q (1 - \cos(E_{2}-E_{1})t/h)) \\ &P_{e}(|v_{e}(t)\rangle) = 1 - \sin^{2}2q \sin^{2}(1/2(E_{2}-E_{1})t/h) \\ &P_{e}(|v_{e}(t)\rangle) = 1 - \sin^{2}2q \sin^{2}(1/2(E_{2}-E_{1})t/h) \\ &P_{e}(|v_{e}(t)\rangle) = \sin^{2}2q \sin^{2}(1/2(E_{2}-E_{1})t/h) \end{split}$$

En utilisant:

 $1 - \cos x = 2\sin^2 x/2,$ $2\sin x \cos x = \sin 2x$

On a donc trouvé:

$$P_{e}(|v_{e}(t)\rangle) = 1 - \sin^{2}2q \sin^{2}(1/2(E_{2} - E_{1})t/h)$$
$$P_{m}(|v_{e}(t)\rangle) = \sin^{2}2q \sin^{2}(1/2(E_{2} - E_{1})t/h)$$

mélange

oscillation

Le terme d'oscillation peut être reformulé:

Les unités pratiques sont Les énergies en GeV Les masses mc² en eV Les longeurs en km...

On trouve alors en se souvenant que

hc = 197 MeV.fm

$$P_{e}(|v_{e}(t)\rangle) = 1 - \sin^{2}2q \sin^{2}(1.27 Dm_{12}^{2}L/E)$$
$$P_{m}(|v_{e}(t)\rangle) = \sin^{2}2q \sin^{2}(1.27 Dm_{12}^{2}L/E)$$

Р

km

Exemple de probabilité en fonction de la distance à la source pour E= 0.5 GeV, $\Delta m_{12}^2 = 2.5 \ 10^{-3} \ (eV/c^2)^2$

To complicate things further: matter effects elastic scattering of (anti) neutrinos on electrons

all neutrinos and anti neutrinos do this equally

e only electron neutrinos 6 **e**⁻

only electron anti- neutrinos

These processes add a forward amplitude to the Hamiltonian, which is proportional to the number of elecrons encountered to the Fermi constant and to the neutrio energy. The Z exchange is diagonal in the 3-neutrino space

this does not change the eigenstates The W exchange is only there for electron neutrinos

It has opposite sign for neutrinos and anti-neutrinos (s vs t-channel exchange)

 $D = \pm 2\sqrt{2} G_F n_e E_v$ THIS GENERATES A FALSE CP

VIOLATION

oscillation is **enhanced** for **neutrinos** if $\Delta m_{1x}^2 > 0$, and suppressed for antineutrinos oscillation is **enhanced** for **antineutrinos** if $\Delta m_{1x}^2 < 0$, and suppressed for neutrinos

since **T** asymmetry uses neutrinos it is not affected

SNO detector

Aim: measuring non v_e neutrinos in a pure solar v_e beam How? Three possible neutrino reaction in heavy water:

Neutral current reaction agrees with Solar Model (flavour blind) SSM is right, neutrinos oscillate!

Prerequisite for CP violation in neutrinos: Solar LMA solution Before KamLAND After KamLAND

This will be confirmed and Δm_{12}^2 measured precisely by KAMLAND and maybe Borexino in next 2-4 yrs

Kamland 2004

(Maximal mixing excluded at >5 s)

Atmospheric Neutrinos

Path length from ~20km to 12700 km

Super-K detector

Water Cerenkov detector 50000 tons of pure light water ≈10000 PMTs

μ/e Background Rejection e/mu separation directly related to granularity of coverige. Limit is around 10⁻³ (mu decay in flight) SKII coverage OKOK, less maybe possible

Atmospheric v : up-down asymmetry

Super-K results

Atmospheric Neutrinos

SuperKamiokande Atmospheric Result

- JAPAN: High Energy Accelerator Research Organization (KEK) / Institute for Cosmic Ray Research (ICRR), Univ. of Tokyo / Kobe University / Kyoto University / Niigata University / Okayama University / Tokyo University of Science / Tohoku University
- KOREA: Chonnam National University / Dongshin University / Korea University / Seoul National University
- U.S.A.: Boston University / University of California, Irvine / University of Hawaii, Manoa / Massachusetts Institute of Technology / State University of New York at Stony Brook / University of Washington at Seattle

POLAND: Warsaw University / Solton Institute

Since 2002

JAPAN: Hiroshima University / Osaka University U.S.A.: Duke University CANADA: TRIUMF / University of British Columbia

ITALY: Rome FRANCE: Saclay SPAIN: Barcelona / Valencia SWITZERLAND: Geneva RUSSIA: INR-Moscow

Accumulated POT (Protons On Target) K2K-SK events

Accumulated POT (×10¹⁸) 8.9×10^{19} POT for Analysis 100 80 60 40 20 K2K-II K2K-I protons/pulse (× 10¹²) -20 t * t ÷+ Jan 04 Jan 00 Jan 03 Jan 01 Jan 02 Jan 99 $N_{SK}^{obs} = 108$

K2K-alll DATA MC (K2K-I, K2K-II) (K2K-I, K2K-II) (K2K-I, K2K-II) FC 22.5kt 108 150.9 $(79.1^*, 71.8)$ (56, 52)1ring 66 93.7 (32, 34)(48.6, 45.1) μ-like 57 (56) 84.8 for E^{_rec} (30, 27) (44.3, 40.5) e-like 8.8 (2, 7) (4.3, 4.5)Multi Ring 42 57.2 (30.5, 26.7)(24, 18)

preliminary

Ref; K2K-I(47.9×10¹⁸POT), K2K-II(41.2×10¹⁸POT) ²³ *: The number is changed from the previous one.

until 2009: θ_{13} : Best current constraint: CHOOZ

M. Apollonio et. al., Eur.Phys.J. C27 (2003) 331-374

World best constraint ! $@\Delta m_{atm}^2 = 2 \ 10^{-3}$ eV^2

sin²(2θ₁₃)<0.2

(90% C.L)

summary

 v_e from the sun or nuclear reactors disappear at $\Delta m^2 = 7 \ 10^{-5} \ eV^2$

- v_u from the atmosphere or beams disappear at $\Delta m^2 = 2.5 \ 10^{-3} \ eV^2$
- v_e from nuclear reactors do not disappear at $\Delta m^2 = 2.5 \ 10^{-3} \ eV^2$

General framework:

- **1.** We know that there are three families of active, light neutrinos *(LEP)*
- 2. Solar neutrino oscillations are established (Homestake+Gallium+Kam+SK+SNO)
- **3.** Atmospheric neutrino ($v_{\mu} \rightarrow$) oscillations are established (*IMB+Kam+SK+Macro+Sudan*)
- 4. At that frequency, $(v_{\mu} \rightarrow v_{e})$ oscillations are small (5%) but have been observed (T2K) and v_{e} disappearance has been measured (Daya Bay, Reno, Double Chooz)

This allows a consistent picture with 3-family oscillations preferred:

LMA: $\theta_{12} \sim 30^{\circ} \Delta m_{12}^{2} \sim 8 \ 10^{-5} eV^{2}$, $\theta_{23} \sim 45^{\circ} \Delta m_{23}^{2} \sim \pm 2.5 \ 10^{-3} eV^{2}$, $\theta_{10} < \sim 10^{\circ}$

with several unknown parameters

=> an exciting experimental program for at least 25 years *) including leptonic CP & T violations

5. There is indication of possible higher frequency oscillation (LSND) to be confirmed (miniBooNe) This is not consistent with three families of neutrinos oscillating, and is weakly supported (nor is it completely consistent) by other experiments.

(Case of an unlikely scenario which hangs on only one not-so-convincing experimental result) If confirmed, this would be even more exciting (Sterile neutrino?)

*)to set the scale: CP violation in quarks was discovered in 1964 and there is still an important program (K0pi0, B-factories, Neutron EDM, BTeV, LHCb..) to go on for 10 years...i.e. a total of ~50 yrs.

and we have not discovered leptonic CP yet!

The Nobel Prize in Physics 2015 Takaaki Kajita, Arthur B. McDonald

Share this: 🛉 💁 🎽 🛨 🤋 51 🔤

The Nobel Prize in Physics 2015

Photo © Takaaki Kajita Takaaki Kajita Prize share: 1/2

Photo: K. MacFarlane. Queen's University /SNOLAB

Arthur B. McDonald Prize share: 1/2

The Nobel Prize in Physics 2015 was awarded jointly to Takaaki Kajita and Arthur B. McDonald *"for the discovery of neutrino oscillations, which shows that neutrinos have mass"*

Alain Blondel Groupe Neutrino Université de Genève

Q | Terms

Copyright © Nobel Media AB 2015

 θ_{23} (atmospheric) = 45°, θ_{12} (solar) = 32°, θ_{13} (Chooz) < 13°

$$\mathbf{U}_{\mathbf{MNS}} : \begin{pmatrix} \sim \frac{\sqrt{2}}{2} & \sim -\frac{\sqrt{2}}{2} & \sin \theta_{\mathbf{13}} e^{i\delta} \\ \sim \frac{1}{2} & \sim \frac{1}{2} & \sim -\frac{\sqrt{2}}{2} \\ \sim \frac{1}{2} & \sim \frac{1}{2} & \sim \frac{\sqrt{2}}{2} \end{pmatrix}$$

 v_1 (majority, 65%) and v_2 (minority 30%) with a small admixture of v_3 (<13%) (CHOOZ) food for thought:

what result would one get if one measured the mass of a V_e

```
(in K-capture for instance)?
```

what result would one get if one measured the mass of a ν_{μ} (in pion decay) ?

Is energy conserved when neutrinos oscillate?

Why do neutrinos oscillate and quarks do not?

food for thought: (simple)

what result would one get if one measured the mass of a V_e

(in K-capture for instance)?

U

what result would one get if one measured the mass of a \boldsymbol{v}_{μ} (in pion decay) ?

V is energy conserved when neutrinos oscillate? would measure a distribution with three values of mass with the following probabilities

Is energy conserved when neutrinos oscillate?

Energy (i.e. mass) eigenstates propagate

- $|v(t)\rangle = \mathbf{U}_{1e} |v_{1}\rangle \exp(i \mathbf{E}_{1} t)$ + $\mathbf{U}_{2e} |v_{1}\rangle \exp(i \mathbf{E}_{2} t)$ + $\mathbf{U}_{3e} |v_{3}\rangle \exp(i \mathbf{E}_{3} t)$
- $\begin{aligned} \mathsf{P}(v_1) &= |\mathsf{U}_{1e}|^2 \\ \mathsf{P}(v_2) &= |\mathsf{U}_{2e}|^2 \\ \mathsf{P}(v_3) &= |\mathsf{U}_{3e}|^2 \\ & \text{ are conserved during propagation} \end{aligned}$

$$\frac{p}{c} = \frac{M^2 - m_1^2 - m_2^2}{2M}$$

$$\frac{\delta p_{\mu}}{c} = \left(\frac{p_{\mu}}{c}\right)_{m_{\nu}=0} - \left(\frac{p_{\mu}}{c}\right)_{m_{\nu}=m_0} \qquad , \qquad \frac{\delta' p_{\mu}}{c} = \left(\frac{p_{\mu}}{c}\right)_{m_{\nu}=m_0} - \left(\frac{p_{\mu}}{c}\right)_{m_{\nu}=m'_0}$$

$$\frac{\delta p_{\mu}}{c} = \frac{m_{\pi}^2 - m_{\mu}^2}{2m_{\pi}} - \frac{m_{\pi}^2 - m_{\mu}^2 - m_0^2}{2m_{\pi}} = \frac{m_0^2}{2m_{\pi}}$$

$$\frac{\delta' p_{\mu}}{c} = \frac{m_{\pi}^2 - m_{\mu}^2 - m_0^2}{2m_{\pi}} - \frac{m_{\pi}^2 - m_{\mu}^2 - {m_0'}^2}{2m_{\pi}} = -\frac{\Delta m^2}{2m_{\pi}}$$

$$1.4 \times 10^{-14} \; \mathrm{MeV/c}$$

$$8.9 \times 10^{-18} \text{ MeV/c}$$

for $\Delta m_v^2 = 2 \ 10^{-3} (eV/c^2)^2$

 $\Delta m_{\pi} = hbar/\tau \sim 4 \ 10^{-14} \ MeV/c^2 \rightarrow \Delta p_{\mu} \sim 3 \ 10^{-14} \ MeV/c$ (verify)

This is the same relationship that ensures that interference happens between light coming from different holes. (can't tell which hole the light went through)

Neutrinos oscillate for the fundamental quantum reason that the width of the decaying parent makes it impossible to tell the neutrino species by measuring its mass from kinematics.

Unrelated Preamble

Why do pions decay into $\pi^+ \rightarrow \mu^+ \nu_{\mu}$ much much more than into $\pi^+ \rightarrow e^+ \nu_e$?

Imagine the π decay at rest. (obviously the decay fraction is Lorentz invariant)

momenta are equal and opposite: $(P_{\mu'\nu})^2 = (m_{\pi}^2 - m_{\mu}^2 - m_{\nu}^2)/2 m_{\pi}$ How are the spins? The μ^+ and ν_{μ} originate from weak interaction

 $\rightarrow u^+$ is right-handed and v_- is left-handed ... however the pion has spin 0If helicity and chirality were identical
we would have violation of
angular momentum conservation!However they are not.
|R>, |L> chirality states; |+>, |->|

However they are not. |R>, |L> chirality states; |+>, |-> helicity states |L>=|-> + m/E |+> |R>=|+> + m/E |->thus the decay rate is proportional to $||<R|->||^2 = (m_{\mu}/E_{\mu})^2$ Also multiply by the phase space factor proportional to $(P\mu)^2 = (m_{\pi}^2 - m_{\mu}^2 - m_{\nu}^2)/2 m_{\pi}$ However they are not. |R>, |L> chirality states; |+>, |-> helicity states |L>=|-> + m/E |+> |R>=|+> + m/E |->thus the decay rate is proportional to $||<R|->||^2 = (m_{\mu}/E_{\mu})^2$ Also multiply by the phase space factor proportional to $(P\mu)^2 = (m_{\pi}^2 - m_{\mu}^2 - m_{\nu}^2)/2 m_{\pi}$

So we can derive the ratio $R_{\pi} = \frac{\pi \rightarrow ev}{\pi \rightarrow \mu v}$

$$R_{\pi} = (m_e/m_{\mu})^2 igg(rac{m_{\pi}^2 - m_e^2}{m_{\pi}^2 - m_{\mu}^2} igg)^2 = 1.2351(2) \ 10^{-4} \ ext{(theory)} \ 1.230(4) \ 10^{-4} \ ext{(exp)}$$

