

16th Baksan School on Astroparticle Physics

BNO INR RAS V.N. Gavrin

"BEST" – Baksan Experiment on Sterile Transitions

BEST – the gallium experiment for a sterile neutrino search

V. N. Gavrin

Institute for Nuclear Research of the Russian Academy of Sciences, Moscow

SAGE

Global intensity of muon - $(3.03 \pm 0.19) \times 10^{-9} (\text{cm}^2\text{s})^{-1}$ Average energy of muon - 381 GeVFast neutron flux (>3MeV) - $(6.28 \pm 2.20) \times 10^{-8} (\text{cm}^2\text{s})^{-1}$

LGGNT l = 60 m w = 10 m h = 12 m Low background concrete - 60 cm

1SNU = **1** interaction/s in a target that contains 10³⁶ atoms of the neutrino-absorbing isotope

• a very good agreement between their results

 $[pp+^{7}Be+CNO+pep+^{8}B|Ga] = 66.1 \pm 3.1 \text{ SNU} \sim 53 \% \text{ of SSM prediction}$

 $[pp|Ga] = 39.7 (1^{+0.13}_{-0.14}) \text{ SNU} = 3.38 (1 \pm 0.14) \times 10^{10} v_e /(\text{cm}^2 \text{ s})$

• *pp* neutrinos flux at Earth at the present time: (6.0 ± 0.8)) × 10¹⁰ /(<u>CM² C</u>) (5.97±0.04) × 10¹⁰ v_e/(cm² s) (BPS08(GS)) (high metallicity) (6.04±0.03) × 10¹⁰ v_e/(cm² s) (BPS08(AGS05)) (low metallicity)

PHYSICAL REVIEW C 80, 015807 (2009)

Gallium source experiments

Gallex has twice used ⁵¹Cr

(1) the capture rate, predicted by Bahcall, can be overestimated (W.Haxton),(2) statistical fluctuation (probability~5%),

(3) electron neutrinos disappear due to a real physical effect. For example, neutrino oscillations with a transition from active to sterile neutrinos with $\Delta m^2 \sim 1 eV^2$.

16th Baksan School on Astroparticle Physics

Consequences of ⁷¹Ga(³He, t) ⁷¹**Ge and Q**_{EC} -value measurements:

1. contribution from excited states: $7.2\% \pm 2.0\%$ (5.1% by Bahcall)⁽¹⁾ Recent measurement of ⁷¹Ga(³He, t)⁷¹Ge (At RCNP, Japan)

2. **Q**_{EC} is close to the value employed by Bahcall⁽²⁾ :

233.7 ± 1.2 keV (232.7 ± 0.15 keV used by Bahcall)

Penning trap Q-value determination of the ⁷¹Ga(v,e⁻)⁷¹Ge reaction using threshold charge breeding of on-line produced isotopes (at ISAC/TRIUMF Canada)

3. the observed discrepancy is **NOT** due to any unknowns in Nuclear Physics.

The deficit of neutrinos in the Ga source experiments can be a real physical effect of unknown origin, such as a transition to sterile neutrinos

$R^{Ga}_{ave-Frefers} = 0.84 \pm 0.05 (2.9\sigma)$

[S Gariazzo, C Giunti, M Laveder, Y F Li, E M Zavanin, arXiv:1507.08204v1 [hep-ph]]

- ⁽¹⁾ D. Frekers, H. Ejiri, H. Akimune et al., Phys. Lett. B 706, 134 (2011)
- (2) D. Erekors M. C. Simon, C. Androoiy et al. Dhys. Lett. P. 722, 4, 5 (2012).

16th Baksan School on Astroparticle Physics

BEST (⁵¹Cr) 3MCi source

Target: 50 t Ga metall Masses of the zones: 8 t and 42 t Path length in each zone: <L> = 55cm, which provides the expected production rate ⁷¹Ge at the start of the first exposure: 64.5 atoms/day

16th Baksan School on Astroparticle Physics

BEST (⁵¹Cr) 3MCi source

The region in Δm² - sin²(2θ) space to which BEST(⁵¹Cr) will be sensitive

The region in Δm² - sin²(2θ) space to which BEST(⁵¹Cr) experiment combined with 4 Ga source experiments will be sensitive

Statistics of the experiment

Expected v capture rates from the source in each zone in the absence of oscillation for 10 exposures of 9 days each :

- > Total number of the captures in 1 zone ~ 1650
- > Total number of ⁷¹Ge pulses in 1 zone ~ 873

Production rate from solar ν: [~0.0197 atoms ⁷¹Ge/(day – 1 tonne Ga)]

1.18 at. ⁷¹Ge in 8 tonne of Ga,
6.20 at. ⁷¹Ge in 42 tonne of Ga

> Statistical uncertainty:

3.7% in 1 zone2.6% in the entire target

> Total systematic uncertainty : ±2.6%

> Statistical and systematic uncertainties combined in quadrature :

4.5% in 1 zone
3.7% in the entire target
> With the Bahcall cross section uncertainty:
5.5% and 4.8%

Work stages on creation of the BEST installations

Result analysis from 2 zones Ga target from solar extractions since 2015 to 2018 years (for 20 pair extractions). Extractions and counting of ⁷¹Ge atoms were performed independently for each zone.

Run	Numbe	r Peak	Best F	it		
	runs		(SNU)			
sph	(40)	K+L	69.5	+4	43.7/ -40	.4 (SNU)
cylr	(40)	K+L	58.5	+9	9.7 / -9.2	(SNU)
comb	(80)	K+L	59.1	+	9.5 / -9.1	(SNU)

The global best fit capture rate is 64.6 +/- 2.4 SNU (with statistical uncertainty only) for SAGE solar data from January 1990 through December 2014 (244 runs)

Ga experiments have developed the technology of preparation of intensive reactor-produced neutrino sources which are ideal tool for calibration of low energy solar neutrino detectors and which also can be used for investigation of neutrino properties

SAGE

84,0 mm

517 ± 1.2% kCi ⁵¹Cr produced by irradiating 512.7 g of 92.4%-enriched ⁵⁰Cr in high-flux fast neutron breeder reactor BN-350 1994 –1995

R = 4.2 cm

 $409 \pm 0.5\% \text{ kCi}$ $^{37}\text{Ar produced}$ by irradiating 330 kg
of CaO in the fast
neutron breeder reactor
BN-600

3.8 MCi ± 0,5%! ⁵¹Cr Project: to irradiate 3 kg of 97%-enriched ⁵⁰Cr in the research reactor SM-3 2019

16th Baksan School on Astroparticle Physics

Main features of the BEST :

R

ø210

Schematic drawing of proposed neutrino source experiment. R_1 and R_2 are the ratios of measured capture rate to predicted rate in the absence of oscillations in the inner and outer zones, respectively.

• A Search for Electron Neutrino disappearance via charged-current (CC) reaction only:

 v_e + ⁷¹Ga \rightarrow ⁷¹Ge + e⁻

 Monochromatic spectrum of compact source – observation of the pure sinusoid of oscillation transitions:

 \lambda m^2 (aV^2) \dots L(m)

$$P_{ee} = 1 - \sin^2 2\theta \cdot \sin^2 (1.27 \frac{\Delta m^2 (eV^2) \cdot L(m)}{E_v (MeV)})$$

- Precisely known intensity of the source.
- Possibility to study the dependence of the rate on the distance to the source.
- Very Short Baseline.

Almost zero background. Mainly from the Sun.

The source, 3 MCi, provides a capture rate in the Ga that

will exceed the rate from the Sun by several factors of ten.

Very well known experimental procedures developed in SAGE solar measurements .

16th Baksan School on Astroparticle Physics

The manufacture of a prototype on 0.5 t of a large scale scintillation detector is started

BNO INR RAS

V.N. Gavrin

16th Baksan School on Astroparticle Physics

Thank you for your attention