

The EUSO-SPB2 mission

Valentina Scotti

Università degli Studi di Napoli Federico II

INFN - Sezione di Napoli

Outline

- POEMMA
- JEM-EUSO program
- EUSO-SPB2
 - Goals
 - Fluorescence detector
 - Cherenkov detector

- origin of UHECRs is still unknown
- sources are extragalactic

NASA astrophysics probe mission concept study based on OWL 2002 study, JEM-EUSO, EUSO-SPB experience, and CHANT proposal

POEMMA will open two new cosmic windows:

- Neutrinos, E > 10¹⁶ eV
- Extreme Energy Cosmic Rays, E>10¹⁹ eV

Space provides order of magnitudes improved sensitivity over a wide range of energies.

The primary goal is to understand the most extreme astrophysical accelerators and explore fundamental physics well above terrestrial accelerator energies:

- begin particle astronomy (identify the sources of UHECRs directly)
- pioneer space observations of astrophysical neutrinos
- discover cosmogenic neutrinos

POEMMA: UHECR

Direct pointing to sources is possible at the highest energies where ground statistics is lowest

 $E > 10^{19} \text{ eV}$

Stereo observation of the air fluorescence signal of air showers:

- significant increase in exposure via space-based observations
 (~10 x ground arrays, ~100 x fluorescence) with full-sky coverage
- good energy and angular resolution
- sufficient **shower maximum resolutions** to guarantee the discovery of UHECR sources and to perform composition measurements

POEMMA: neutrinos

Observe neutrinos signal through the Cherenkov signal from upward-moving EAS induced by τ decays in the atmosphere

POEMMA: the mission

Class B Mission, 3-year LEO 525 km, 28.5° inclination 300 km to 25 km separation Phase A start 2023 - Launch 2029

Two 4 meter F/0.64 Schmidt telescopes 45°FoV

Hybrid focal surface (MAPMTs and SiPM)
3mm linear pixel size: 0.084° FoV

Mass	1,550 kg
Primary Mirror diameter	4 m
Corrector Lens diameter	3.3 m
Focal surface diameter	1.6 m
Aperture	6 to 2 m ²
Instrument power	550 W
Science data	1 GB/day

POEMMA: hybrid focal surface

UV Fluorescence detection with MAPMTs 1µs sampling

60 Photo Detector Modules (PDMs) = 138,240 pixels

64 channels Multi-Anode PMT with BG3 filters

1 PDM = 36 MAPMTs = 2,304 pixels

28 SiPM Focal Surface Units (FSUs) =14,336 pixels

1 FSU= 64x4x2 = 512 pixels

The JEM-EUSO program: UHECR from space

Joint Experiment Mission - Extreme Universe Space Observatory

- EUSO-TA: ground detector installed in 2014 at Telescope Array site (USA), currently operational
- EUSO-Balloon: 1st flight from Timmins, (Canada) by the French Space Agency, 2014, technology demonstrator
- EUSO-SPB1: NASA ultra long duration flight from Wanaka (New Zealand); launched in April 2017
- MINI-EUSO: precursor on International Space Station (ISS) approved by Italian and Russian Space agencies; launch in 2019, UV background measurements
- EUSO-SPB2: build upon the EUSO-SPB1 experience to pave the way towards the POEMMA mission, launch in 2022
- K-EUSO: bigger telescope on ISS in 2022, equipped with Schmitd optics. Approved by Roscosmos. It could reach 4 x PAO exposure

EUSO-SPB1 experience

Goals:

- Measure of EAS signals by looking down on the Earth's atmosphere from suborbital space with a fluorescence detector
- Measure of the UV emission over the ocean and over clouds
- Search for fast UV pulse-like signatures from other objects

Flown as NASA mission of opportunity from Wanaka, NZ in 2017 Targeted flight duration: 100 days

EUSO-SPB2 science goals

Detect fluorescence from above: confirm expectations from ground observations (lower energy threshold and larger acceptance relative to EUSO-SPB1)

New Unexplored Areas:

- Detect Cherenkov light from cosmic rays from near space
- Measure the **background of up-going** τ decays from cosmogenic ν
- Study fluorescence from high altitude horizontal showers in a nearly constant density atmosphere to check hadronic interactions at ultrahigh energies

EUSO-SPB2 technical goals

Test instrumentation and methods for POEMMA

First use of Schmidt Optics

Two telescopes:

- \triangleright Cherenkov ~10 ns $E > 10^{16} eV$
- ➤ Fluorescence 1 uS **E > 10**¹⁸ **eV**Same mechanical structure,
 mirror, and corrector plate units
- Ancillary Devices: IR camera, AMON

In addition:

- tilting mechanism from nadir to 10° above the horizon
- SiPMs qualification for POEMMA
- in flight calibration with stars

Preflight ground tests -US: Desert, Mountain Stratospheric Flight (33.5 km): 100 day target

EUSO-SPB2 detection principle

Fluorescence telescope will observe from above fluorescence and Cherenkov UV photons generated by EAS created by UHECR using the atmosphere as a calorimeter

EUSO-SPB1 heritage: fluorescence telescope

Optics: 2 Φ1m Fresnel type lenses + UV filter (330-400 nm) FoV = ±5.5°

Photo Detector Module:

array of 36 Multi-Anode PhotoMultiplier Tubes (MAPMTs) of 64 pixels: 2304 channels

Tracker Beacon for aircraft underflight

CSBF SIP

Electronics Compartment + PDM, CPU, Batteries

Exoskeleton

Ballast Hopper 1 of 2

UCIRC IR Camera

Data Processor: readout performed by one ASIC per MAPMT + multiple trigger levels to filter out noise and identify events of interest

- + an **infrared camera** to provide complementary information on the observation conditions
- + a SiPM Photo Detector in a dedicated box

EUSO-SPB2 fluorescence telescope

Single Photoelectron Counting 1.0 μ s time bins, 1 "video clip" = 128 time bins ~15 watts

New integrated digitization

BGA packaged Spaciroc3 ASIC

Schmidt optics

FoV: 15° × 45° normal mirror Corrector Plate: 1 m² Image resolution: ~ few mm Pixel size: ~3mm²

Baseline design is 3 PDMs

V. Scotti - The EUSO-SPB2 mission - 15

EUSO-SPB2 Cherenkov telescope

FoV: 5° × 45° bi-focal mirror Camera with 5376 pixel

Pixel size: $3 \times 3 \text{ mm}^2 = 0.2^{\circ} \times 0.2^{\circ}$

Focal Plane: 2 × 16 SiPM

Bi-focal mirror

Read-out AGET ASIC + Zynq SOCs

10 ns time resolution

Light Source

Stack of 4

AsAd Boards

Bi-focal mirror

EUSO-SPB2 electronics

Summary

EUSO-SPB1: successful launch, 12 day flight in 2017

Most data downloaded (loss of half of telemetry, premature termination)

Detector performed well: stable, measured UV emission, direct CRs

EUSO-SPB2: improved **Multi-Telescope Instrument**, builds on SPB1 experience Add unexplored areas: Cherenkov, neutrino backgrounds, High Altitude EASs

Scientific and technical pathway toward POEMMA

POEMMA will open two new cosmic windows: v from astrophysical to cosmogenic, and Extreme Energy Cosmic Ray (> 10¹⁹ eV)

Спасибо!

Particles and Cosmology

16th Baksan School on Astroparticle Physics

Extensive Air Showers

Above 10¹⁵ eV, cosmic rays can be studied only by indirect observation of Extensive Air Showers (EAS) produced by the interaction between primary Cosmic Ray and atmospheric molecules

Cherenkov Emission and Propagation

- EAS and Cherenkov Generation
 - Greissen shower parameterization for EM showers; Gaisser parameterization for protons for hadron-initiated showers
 - Cherenkov light generated following Hillas (1982)
- Atmosphere Model
 - Rayleigh scattering treated as absorption vs. wavelength
 - Ozone profile and attenuation given by Krizmanic (1999)
 - Aerosol attenuation vs. wavelength given by Elterman (1968)

POEMMA neutrino observation

The UHE neutrinos are expected to be born as v_{μ} or v_{e} . Due to vacuum oscillations, however, the astrophysical and cosmogenic neutrino flux at the Earth is expected to be almost equally distributed among the three neutrino flavours v_{μ} , v_{e} , v_{τ} Some experiments search for v_{τ} (ANITA, IceCube-Gen2, MAGIC...) \rightarrow POEMMA will join the research!

POEMMA designed to observe

Cherenkov signal of tau decays.

neutrinos with $E > 10^{16}$ eV through

EUSO-SPB1 specifications

- SPB: when the balloon reaches float altitude, "excess" helium pressurizes the balloon, ballast not required
- Looks down
- Operates at night when the moon is down

SPB Float Height	110,000 ft = 33.5 km	
Weight		
Detector	2250 lbs	
Payload	2700 lbs w/ SIP, Antennas, Empty Ballast Hoppers	
Dimensions	1.2m x 1.2m x 3m	
Power consumption	40 W Day, 70 W Night (assumes 20W PDM heater @ 50%)	
Telescope	Refractor with 2 Fresnel lenses	
FOV	11. deg (measured w/ stars)	
Camera:	2,304 pixels; 36 MAPMTS (Hamamatsu R11265-113-M64-MOD2)	
Data volume:	Downlinked ~1-1.5 Gb/day	
Recorded	~3 GB/Day w/ 10 hour dark run	
	with trigger rate of 0.2 Hz	
Energy threshold	for h=33 km ~3 EeV	
Ground equivalent T	rigger Aperture	
	250 km^2sr @ 3 EeV to ~500 km^2 sr @ 10 EeV	

The first EUSO-SPB1 flight

% of data downloaded before splash (30 of 40 hours collected) :

➤ 60 Gb ~30 hours data w/moon

down, dark

	Data Taken	Data downloaded
Per day	0425: 34 min 0426: 100 min 0427: 276 min 0428: 370 min 0429: 338 min 0430: 304 min 0501: 172 min 0502: 330 min 0503: 200 min 0504: 206 min 0505: 212 min 0505: 138 min	0425: 34 min 0426: 100 min 0427: 160 min 0428: 370 min 0429: 338 min 0430: 304 min 0501: 172 min 0502: 330 min
Total	2500 min → 41.7 h	1828 min → 30h

- ➤ Data Analysis in progress:
 - searches for UHECR
 - UV Background
 - searches for optical transients in progress
 - searches for man-made flashes (planes, strobe lights)

0-1280, pkt: 0-10, GTU in pkt: 0-0, UTC time: 2017-04-28 09:49:35.7498624-09:49:41.661
Utah time: 2017-04-28 03:49:35.7498624-03:49:41.6612024

Clouds moving in the SPB FoV (averages of 1280 GTUs)

EUSO-SPB2 electronics

Main tasks:

- Interface with Flight Computer telemetry system
- Define Telescope operation mode
- Power ON/OFF the instrument
- Configure the FE electronics
- Start/Stop data acquisition and calibration procedures
- Synchronization of the data acquisition
- Tag events with GPS time and GPS position
- Manage trigger signals
- Data selection/compression and transmission to Flight Computer
- Monitor/Control/DAQ of some Ancillary Devices
- Monitor Voltages, Current and Temperatures (LVPSs, boards, FPGAs)

EUSO-SPB2 telemetry

SPB1 flew two Iridium Open Port systems: ~70 kbits/s each (one died after 6 days)

SPB2: 1 working Open Port @ 70 kbits/s (2nd considered a spare)

70 kbits/s Data:

~15% Housekeeping + IR Camera + UV/Vis model ~45% Fluorescence Telescope ~40% Cherenkov Telescope

On Board Event Prioritization is Required

Current plan assumes SPB1 system
CSBF is looking into faster options, but
timescale for availability and data rate not
known at present

