The Carpet-3 EAS array

V.B. Petkov Institute for Nuclear Research of RAS, Baksan Neutrino Observatory

The Carpet-3 EAS array : 1) is the further development of the Carpet-2 EAS array

The "Carpet-2" array. 1-6 - outside detectors , 7 - "Carpet", 8 - muon detector, 9 - neutron monitor.

Carpet-2 air shower array

The Carpet proper: continuous area ≈ 200 m² (400 liquid scintillation counters)

 $\Delta X = \Delta Y = 0.7 \text{ m}$

"Carpet-2" EAS Array

1st stage of the Muon Detector (MD) - 175 m² - in operation since 1999

The Carpet-3 EAS array : 2) is intended to be a multi-component and multi-purpose array

Multi-component:

electron-photon, muon (with a threshold energy of 1 GeV), hadron (hadrons with energies more than 30 GeV and thermal neutrons)

A number of parameters $(x_1, x_2, ..., x_k,...)$ can be measured for each EAS and the multiple parameter method is assumed to allow determination of both energy and type (atomic number) of a primary particle with good enough accuracy.

$$(X_1, X_2, ..., X_k, ...) \rightarrow (A_i, E_0)$$

{
$$A_0 = \gamma$$
; $A_1 = p$, $A_2 = He$,, $A_{56} = Fe$, ... }

The Carpet-3 EAS array

Examples of measurable parameters:

1)
$$x_1 = N_{ch}^c$$
 - the number of charged particles in the
Carpet;
2) $x_2 = n_{\mu}$ - the number of muons ($E_{\mu} > 1$ GeV)in the
MD;
3) $x_3 = n_h$ - the number of hadrons ($E_h > 30$ GeV) in the
After the processing of measured data :
N_{r.p.} (or N_e) - shower size (total number of charged
particles in the EAS);
f(r) - lateral distribution function (LDF);
(θ , ϕ) - arrival direction
and so on

EASs with axes well inside the Carpet: the accuracy of the axis position for such events is ~ 0.2 m. This gives a possibility to perform fine-resolution measurements of the lateral distribution function (LDF) and its fluctuations near the EAS core.

Primary composition: better separation for large area of Muon Detector

Search for primary y-rays: y-ray air showers are muon-poor

 N_{μ} – total number of muons, $N_{r.p.}$ – reconstructed shower size $N_{r.p.} = f(E_0)$

Simulated showers

Simulated showers

 $N_{r.p.}$ – reconstructed shower size, n_{μ} – the number of muons in the MD

 $S_{MD} = 615 \text{ m}^2$

Search for diffuse cosmic gamma rays associated with Ice Cube neutrino events

gamma-rays and neutrino:

The curve represents a theoretical prediction (shaded region - model uncertainty related to neutrino spectrum) for the model in which photons and neutrinos are produced in cosmic-ray collisions with the hot gas surrounding our Galaxy, assuming the best Ice Cube observed neutrino spectrum.

IceCube astrophysical neutrinos without a spectral cutoff and $(10^{15} - 10^{17})$ eV cosmic gamma radiation. O. Kalashev, S. Troitsky, arXiv:1410.2600

Carpet-3 - prospects

Additional 20 - 25 modules of surface detectors of 9 m² area (9 plastic scintillation counters of area of 1 m² in each module)

Muon Detector 410 m²

Carpet-3 sensitivity to the flux of diffuse cosmic gamma rays

Conclusions

1) The Carpet-3 air shower array is under construction at the Baksan Neutrino Observatory by step-by-step upgrade and extension.

2) The principal goal now is to study diffuse gamma-ray background at energy above 100 TeV.

3) After final accomplishment of this array it can be competitive in its class and will have a chance to get the world-best limit on the flux of gamma rays of cosmic origin. This will allow one to solve the problem of origin of high-energy astrophysical neutrinos detected by IceCube.