

Photosensors and detector development in Astroparticle Physics

Thomas Huber – Baksan School on Particles and Cosmology

How to (steady) find something out about the universe Or: What is all about :-)

Steady upgrade of the human "Instrumentation" (= The eye)

The optical sky – Visible via human eyes

Wavelength = 10^{-6} m $\leftrightarrow 1$ eV

The optical sky – Visible via detecting gamma rays

Wavelength = $10^{-12} \text{ m} \leftrightarrow 1 \text{ GeV}$

The optical sky – At very high energies

Wavelength = 10^{-15} m \leftrightarrow 1 PeV

SENSE Karlsruhe Institute of Technology

The optical sky – At very high energies

Cosmic Microwave Background (CMB)

$$\gamma_{_{\rm PeV}}$$
 + $\gamma_{_{\rm CMB}}$ \rightarrow e⁺ + e⁻

PeV Photons are interacting with CMB Photons (411/ cm³) before reaching our telescopes

We need other "messengers"

Astroparticle physics: Another window into the universe: Cosmic Rays

Another window into the universe: Cosmic Rays: Extensive Air-Showers

F. Schröder (KIT-IKP, Uni Delaware)

Extensive Air-Showers: Detectable!

KASCADE

Pierre-Auger Observatory

IceCube : IceTop

J. Oehlschläger, R. Engel, (KIT-IKP)

How to read out the detectors. Or: How to "transform" Photons into a measurable voltage?

Photomultiplier (PMT)

Silicon Photomultiplier (SiPM)

Pierre-Auger Observatory

IceCube : IceTop

KASCADE

Silicon Photomultiplier (SiPM)

≶ 10kΩ

 \leq_{R}

	PMT	SiPM
Photo Detection Efficiency PDE	20-40%	20-60%
Gain	10^{6}	10^{6}
TTS (Transit Time Spread)	~1 <u>ns</u>	~1 <u>ns</u>
Dynamic range	10^{6}	10^{3}
Dark noise rate	~Hz 🙂	~MHz 兽
Behavior in magnetic fields		\bigcirc
Operation Voltage	1000+ V 😬	50-70 V 🙂
Temperature sensitivity	\bigcirc	-
Robustness and compactness	-	٢

) +v

Х

Number of detected photons PDE = Number of incident photons

How they look like

100x Zoom

1 Avalanche Photodiode (of est. 3600 @ 1 pixel) Crosstalk-reducing Isolator

Hamamatsu S13361-3050

Gain: Low Bias Voltage: Number of APDs: Darkcountrate: ~ 10⁶ ~53V ~3600 ~1 Mcps

SiPM Candidate

How to calibrate them?

Characterising measurement setup (SPOCK)

SPOCK: Single PhOton Calibration stand at KIT

Simplified sketch of measurement method

1 st step: Calibrating the measurement setup:

Simplified sketch of measurement method

2 nd step: Characterize the photo sensor (SiPM / PMT)

Characterizing SiPMs

Inside of the calibration setup

Collimator Attenuation
 ~10⁶ (→ Single photon pulses)

Available Wavelengths:

- 423nm
- 395nm
- 376nm
- 371nm
 - Linear stage to automated measurement of more SiPM channels
- Only room Temperature (yet)

How the data looks like

How the data looks like

Okay...

Calibrated!

We know what we can measure with that

Using photo sensors in astroparticle physics for... what?

("Backup": What is the story of the SiPM temperature dependcy?)

Example #1 SiPMs for the surface extension at IceCube

Or: Developing (and deploying) detectors as PhD thesis

The IceCube Observatory

How IceCube Signals looks like – How you "see" an astrophysical Neutrino

Neutrino detectable if it weakly interacts and creates a charged particle

(Muons, Electrons, Tauons)

Weakly interaction

Is IceCube working? Seems like

Signature of "Ernie" (1.1 PeV) and "Bert" (1.3 PeV) The first observations of PeV Neutrinos of astrophysical origin

Blazar TXS 0506+056

Right Ascension [°]

<mark>2018:</mark>

First time that a neutrino detector has been used to locate an object in space and that a source of cosmic rays has been identified **>>> Multi-Messenger astronomy**

Towards IceCube-Gen2

How to measure MIPs

[&]quot;Final result"

Used scintillator material and optical fibers

 Scintillator material: Fermilab scintillator bars
 Wavelength shifting fibers: "Kuraray Y-11" optical fibers

CAD of the detector

Sensitive scintillator area: 0.8m x 1.875m = 1.5m²

Routing of the fibers:

16 optical fibers = 32 fiber ends to the SiPM

Optical coupling

Fixed routing of the optical fibers to ensure an uniform detector

Why SiPMs as photosensors?

Performance increases at low temperatures:

- Less dark counts
- Less bias voltage needed
- Higher PDE

- ...

No better place on Earth (beside the Lab) to operate SiPMs than:

At the South Pole

Optical coupling to the photosensor (SiPM)

Used DAQ electronics for the scint detector array

T. Karg, K-H. Sulanke, M. Kossatz (DESY)

IceARM (Analog Readout Modul) :

- Analog readout of the SiPM
- High-Gain / Low-Gain (10x / 1x)
- Hamamatsu Power supply for the SiPM
- Temperature sensor next to the SiPM

IceTAXI:

- Developed by DESY Zeuthen
- 1 or 3 DRS4 sampling chips, 8 input channels each
- Adjustable sampling rate up to 5 Gigasamples/s
- Triggered by signal-over-threshold

A lot of function tests + specifications + documentation

- SiPM:

- Breakdown Voltage / Operation voltage
- Photo Detection Efficiency, Gain, Crosstalk %, Darkcount race
- Breakdown Voltage at different low temperatures (ongoing)
- Electronics:
 - Cookie Board → SiPM connections, temperature sensor
 - Adapter board \rightarrow Connection to readout board
 - Readout board:
 - Communication Hamamatsu pover supply
 - Outgoing bias voltage to the SiPM
 - Amplification factors of the Op-Amps
 - Signal shape of high wy gain
 - GP-Board:
- Function test
- RS485 interface test
- Amplification factor after 65m of cable

Cookie boards

Readout boards

Full system tests a the IceCube cooling chambers with T. Karg (DESY) Madison, Physical Science Lab (PSL)

Production and testing of the scintillators

Deployment – Season 2017/18

- 2 different scintillator prototype stations
- Main difference:
 - Digital transfer of the detector signal to the DAQ (uDAQ, UW-Madison)
 - Differential analog signal transfer to the central DAQ and possibility to investigate the SiPM Waveforms (TAXI, KIT/DESY)

2017/18 wido Che wido Ch

Different alignments to compare both DAQ systems and the influence of snow covering

Detector "on the way"

Deployed detectors

Data acquisition

Is it working? How the scintillator signals look like

Threshold-Scan U_bias = U_SiPM_corrected @ -55°C; DESY/KIT Cluster -> IceTAXI02 10 Panel 002-25, High-gain Panel 004-25, High-gain Panel 005-25, High-gain Eventrate (1/s) Panel 006-25, High-gain Panel 007-25, High-gain Panel 008-25, High-gain Panel 009-25, High-gain 10³ the second s 200 400 Threshold [mV]

Threshold to start processing MIP events only

Charge histogram

Signal-Over-Threshold SiPM Peak

Waveforms Air-Shower event

Is it working? SiPM Bias-Voltage<->Temperature control loop

Is it working? Scintillators <-> IceTop reconstruction

Difference between scintillator station and IceCube: IceTop shower axis reconstruction (3834 events)

Summary: With a little of effort, you can really measure stuff with as example SiPMs :-)

Thanks for listening

If there is time you can choose

- Temperature dependency of SiPMs
- The space-based fluorescence telescope JEM-EUSO and the SiPM "Addon"
- What it is like to travel and work at the South Pole?

Addition #1 - Temperature dependency of SiPMs

- TSV-SiPM testing device with attached temperature/humidity sensor and one part of the readout electronics
- 2x 3mm², 1x 2mm², 1x 6mm² TSV SiPM sockets to compare them simultaneously
- Photon shielding is overlapping the corners.

Experimental Setup for Bias-Voltage / Darkcounts

Raspberry Pi B+

DRS4 Evaluation Board:

- Up to 5 GS/s
- DAQ SiPM Signals

4 Channel ADC

C11204-01 Output Voltage: 50V to 90V

AM2303 ± 2% of humidity level ± 0.3°C temperature

Arduino UNO Rev 3:

- Mounted with Hamamatsu SiPM Power Supply
- Control of Bias voltage via Python interface
- Current Monitor

Raspberry Pi B+

- Connected via GPIO to temperature sensor
- Monitoring temperature. Written in Python; Controlled via SSH; Saving data via SQL to a local webserver

Temperature dependency of the bias voltage

Experimental Setup

29/02/2016

Consequence of not adjusting the bias voltage

With a constant bias voltage:

Dark counts of TSV-MPPCs

"Funny": Estimation of the band gap energy of TSV-SiPMs

Arrhenius plot for estimating the band gap energy of the used TSV-MPPC (SiPM).

Addition #2 - The SiECA fluorescence camera for JEM-EUSO

The (initial) JEM-EUSO program

JEM-EUSO collaboration

- Detection of Ultra High Energy Comsic Rays by measuring induced Fluorescence light and scattered Cherenkov light
- 1.9m x 2.3m focal surface out of 4932 PMTs with 64 channel each PMT (standard design)
- Pathfinder Mission: EUSO – Super Pressure Balloon

16 Countries, 86 Institutes, 346 people

٩

The (initial) JEM-EUSO program

The (initial) JEM-EUSO program One pathfinder: EUSO-SPB 2017

- Fluorescence camera with 265 SiPM channels
- Placed next to an EUSO photo detection module (PDM)
 → (Previous slides)

(Used: 4x 64 channel SiPM array S13361-3050AS)

EUSO-SPB.

EUSO-SPB 2017

Detector Basics

- 1 PDM, 2304 MAPMT channels
- 2 PMMA Fresnel Lenses
- Data storage and transmission

Mission

- Observe 10 UHECR Fluorescence and 2 Cherenkov events
- 60-100 days above 33 000 m

Plus the Silicon Photomultiplier Addon SiECA! The SiECA camera

Silicon photomultiplier Elementary Cell Add-on camera

SiECA integration in Super pressure balloon gondola

EUSO Balloon Gondola **New Gondola has been built for EUSO-SPB** SiECA SiPM arrays

SiECA in detail

Euso-SPB with SiECA: ready to start

thomas.huber@kit.edu

Karlsruhe Institute of Technology

SENSE

First super pressure baloon flight 2015

NASA's first Super Pressure Balloon flight, March 2015, Wanaka, NZ:

- No scientific instrumentation
- But: Flight duration 32 days
 - \rightarrow Proof of principle for the Super Pressure Baloon

Disaster in the South Pacific

SiECA Results

SiECA Measurement Periods

Total Counts per Event per Channel

SiECA background measurement

- Successful measurements with SiECA during flight time
- Super pressure balloon went down after 12 days due to leak in balloon

SPB flight path

Addition #3 - That was the physics.

Lets switch to a "slide show" :-)

What's it like to travel to the South Pole?

- Tremendous amount of paperwork
- A lot of medical and dental tests if you (and your teeth) survive at the South Pole
- Better do not have any wisdom teeth left

14 pages of blood count

Dental "tests"...

And you need some pretty good reason (= experiment) to go to the Pole

I guess that travel form (~100 pages) is a new KIT record

How to survive

- And a lot of **strange** travel...

Christchurch – USAP Terminal

Christchurch – USAP Terminal

Christchurch – Getting clothes

McMurdo Station - Runway

Inside of a LC-130 Hercules

- And a lot of **delay/waiting/** for good weather to travel to Mc Murdo Station and the South Pole Station (and back)

Arriving Flights			
Flight F	From	ETA	ATA
Intercontinen GZM021 Departed @ (to CHC	tal Arrivals CHC)9:14 Mission abor	12-Jan 17 ted due to we	:51 Delayed eather, returning
LC-130 On 0	ontinent Arrivals		
SHG018R	SHACKLETON	12-Jan 13:	:40
WSD010R	WAIS DIVIDE	12-Jan 15:	:00
SHG019R	SHACKLETON	13-Jan TB	D
WSD011R	WAIS DIVIDE	13-Jan 00:	:01
ZSP033R	SOUTH POLE	Cancelled	
WSD012R	WAIS DIVIDE	13-Jan 01:	00
ZSP03AR	SOUTH POLE	Cancelled	
Air Servi	ces x2347	LastU	poare 12-Jan 11:58

McMurdo Station

McMurdo Station

McMurdo Station

McMurdo Station

McMurdo Station

Christchurch - USAP

- But with **nice views**...

Towards South Pole

Towards Mc Murdo

View from ICL to South Pole Station

Hiking / Staying in shape / Waiting McMurdo 63 4/12/19

Hiking / Staying in shape / Waiting McMurdo

- But it is... **work** :-)

South Pole - ICL

South Pole - ICL

South Pole – Somewhere nowhere

Digging out the DAQ

Recabling the DAQ

- But: It is all not that **dead serious** :-)

South Pole Odyssey

Mc Murdo Station – M. Kauer, (UW Madison)

South Pole – T. Huber, M. Kauer, M. Kossatz (DESY)

Mc Murdo Station

ICL - South Pole -M. Kauer, (UW Madison)

"Path" to the IceCube Lab and back to the South Pole Station

Backup

How the scint station looks like after one season

thomas.huber@kit.edu

Summary / Outlook / What's next

Is the full DESY/KIT scintillator system capable to detect cosmic air-showers?

\rightarrow Comparison with IceTop reconstruction:

Zenith and Azimuth difference between DESY/KIT Scintillator Station and IceTop reconstruction

- IceARM<-> IceTAXI DAQ chain is meanwhile pretty good understood

- DAQ characterization still ongoing
- Air-Shower analysis starts
 → See next talk by Agnieszka

70

4/12/19

