Neutrino oscillations: experimental review

Yury Kudenko

Institute for Nuclear Research, Moscow

16th Baksan School on Astroparticle Physics 11 April 2019

16th Baksan School

OUTLINE

Neutrino oscillations

- discovery of neutrino oscillations
- 3-neutrino scheme
- running accelerator and reactor experiments
- future projects

Light sterile neutrinos

- neutrino anomalies
- new experimental tests

Solar neutrino problem

Davis R(Jr), Harmer DS, Hoffman KC "Search for neutrinos from the Sun" Phys. Rev. Lett. 20 1205 (1968)

....the flux of neutrinos from B⁸ decay in the sun was equal to or less than 2×10⁶ cm⁻² sec⁻¹ at the earth, and that less than 9% of the sun's energy is produced by the carbon-nitrogen cycle.

Idea of neutrino oscillations - 1957

$$K^0 \leftrightarrow \overline{K}^0$$
$$\nu \leftrightarrow \overline{\nu}$$

Mesonium and anti-mesonium

B. Pontecorvo

Sov.Phys.JETP 6 (1957) 429 Zh.Eksp.Teor.Fiz. 33 (1957) 549-551

1965

Inverse beta processes and nonconservation of lepton charge

B. Pontecorvo (Dubna, JINR)

Sov.Phys.JETP 7 (1958) 172-173, Zh.Eksp.Teor.Fiz. 34 (1957) 247

Neutrino Experiments and the Problem of Conservation of Leptonic Charge B. Pontecorvo (Dubna, JINR) Sov.Phys.JETP 26 (1968) 984-988, Zh.Eksp.Teor.Fiz. 53 (1967) 1717-1725

Exp flux < 3 SNU SSM \rightarrow 7.5 ± 3 SNU

16th Baksan School

Z.Maki, M.Nakagawa, S.Sakata, Remarks on the unified model of elementary particles, Prog.Theor.Phys. 28 (1962) 870

Neutrino oscillations

- one flavor can transform into another
- neutrino should have a non-zero mass and mix
- oscillation probability depends on
 - $\mathbf{m}_{\mathbf{v}}, \mathbf{E}_{\mathbf{v}}$ and distance **L**

Mixing in two families

v oscillations in vacuum

2 neutrinos: v_{μ} and v_{e} with masses m_{1} and m_{2} **2 oscillation parameters:** $\Delta m^{2} = m_{2}^{2} - m_{1}^{2}$ and mixing angle θ

$$\begin{split} v_{e}(t=0) &= \cos\theta |v1\rangle + \sin\theta |v2\rangle \\ v_{\mu}(t=0) &= -\sin\theta |v1\rangle + \cos\theta |v2\rangle \\ v(x,t) &= \exp(ip \cdot x - E_{1}t) \cos\theta |v1\rangle + \exp(ip \cdot x - E_{1}t) \sin |v2\rangle \\ v(t) &= \cos\theta |v1\rangle + e^{i\phi} \sin\theta |v2\rangle \\ \phi &= [(m_{1}^{2} - m_{2}^{2})/2p] \cdot t \\ P(v_{e} \rightarrow v_{\mu}) &= |\langle v_{\mu} | v(t)\rangle|^{2} = \sin^{2}2\theta \sin^{2}(\pi x/L) \end{split}$$

Solar neutrinos

Solar experiments

Homestake, Sage, Gallex/GNO, SK

Reactor experiment KamLand, Japan

SNO, Canada

ν flux	(10 ⁶ cm ⁻² s ⁻¹)
ν_{e}	1.76(11)
$\nu_{\mu\tau}$	3.41(66)
v_{total}	5.09(64)
v_{SSM}	5.05

 $\Delta m^2 \sim$ (7-8)×10⁻⁵ ev² $\theta \sim$ 35 deg

16th Baksan School

Atmospheric v

Atmospheric neutrinos

16th Baksan School

Atmospheric neutrinos

First result was reported at Neutrino98 in Toyama, Japan T.Kajita, talk at Neutrino98

 $\Delta m^2 \sim (2-3) \times 10^{-3} \, eV^2$ $\theta \sim 45 \, deg$

NOBEL PRIZE IN PHYSICS 2015

Nobelpriset i fysik 2015

The Nobel Prize in Physics 2015

UNGL

Nobelpriset i fysik 2015

Takaaki Kajita Super-Kamiokande Collaboration University of Tokyo, Kashiwa, Japan

Arthur B. McDonald Sudbury Neutrino Observatory Collaboration Queen's University, Kingston, Canada

"för upptäckten av neutrinooscillationer, som visar att neutriner har massa" "for the discovery of neutrino oscillations, which shows that neutrinos have mass"

Confirmation of oscillations of atm v's

 $\Delta m^2 \sim 2\text{-}3 \times 10\text{-}3 \text{ eV}^2$, large mixing $\theta \sim 45 \text{ deg}$

Long baseline accelerator experiments Three main elements: neutrino beam, near detector, far detector

Experimental method

- produce pions in p + A $\rightarrow \pi$ + X at accelerator
- $\pi \rightarrow \mu + \nu_{\mu}$ focus pions
- select right E and baseline L to tune to oscillation maximum
- measure neutrino flux, energy, beam contamination before oscillations (near target)
 measure neutrino flux, energy at far detector
- -compare predicted spectrum assuming no oscillations with measured spectrum
- extract oscillation parameters

LBL accelerator experiments

- Test and measurements of atmospheric oscillation parameters
- On-axis neutrino beams

First LBL experiment K2K, Japan L= 250 km

16th Baksan School

LBL experiment MINOS, USA L = 735 km

16th Baksan School

v oscillations and mixing

Standard Model: neutrinos are *massless* particles

16th Baksan School

Main goals of oscillation experiments

	neutrinos quarks
- CP violation in lepton sector	(0.805.02) $(1.02.00)$
Strength of CP violation in neutrino oscillations	$V_{MNS} \sim \begin{pmatrix} 0.16 & 0.12 \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \end{pmatrix} \qquad V_{CKM} \sim \begin{pmatrix} 1 & 0.12 & 0.01 \\ 0.2 & 1 & 0.01 \\ 0.001 & 0.01 & 1 \end{pmatrix}$
$J_{CP} = Im(U_{e1}U_{\mu2}U_{e2}^{*}U_{\mu1}^{*}) = Im(U_{e2}U_{\mu3}U_{e3}^{*}U_{\mu2}^{*})$ = $cos\theta_{12}sin\theta_{12}cos^{2}\theta_{13}sin\theta_{13}cos\theta_{23}sin\theta_{23}sin\theta_{23}sin\delta_{CP}$	Quark sector $J_{CP} \approx 3 \times 10^{-5}$
all mixing angles $\neq 0 \rightarrow \rightarrow J_{op} \neq 0$ if $\delta_{op} \neq 0$	Lepton sector $J_{CP} \sim 0.02 \times sin \delta_{CP}$
- Neutrino mass hierarchy v ₂ v ₁	hal hierarchy Δm_{32}^2 v_1 Δm_{21}^2 v_3 Δm_{13}^2 λm_{13}^2 λm_{21}^2 λm_{13}^2
- θ_{23} – maximal? If not, what octant ($\theta_{23} > \pi/4$ or θ_{23}	θ ₂₃ < π/4)?
	Neutrino cross sections
Starila noutrinea	

 $\nu_{\mu} \rightarrow \nu_{e}$ in matter

$$P(\nu_{\mu} \to \nu_{e}) = 4c_{13}^{2} \frac{2}{61} s_{23}^{2} \sin^{2} \frac{\Delta m_{13}^{2} L}{4E_{\nu}} \times \left[1 + \frac{2a}{\Delta m_{13}^{2}} (1 - 2s_{13}^{2})\right] \longrightarrow \theta_{13}$$

$$+ 8c_{13}^{2} s_{12} s_{13} s_{23} (c_{12} c_{23} \cos \delta - s_{12} s_{13} s_{23}) \cos \frac{\Delta m_{23}^{2} L}{4E_{\nu}} \sin \frac{\Delta m_{13}^{2} L}{4E_{\nu}} \sin \frac{\Delta m_{12}^{2} L}{4E_{\nu}} \longrightarrow CP-\text{even}$$

$$- 8c_{13}^{2} c_{12} c_{23} s_{12} s_{13} s_{23} \sin \delta \sin \frac{\Delta m_{23}^{2} L}{4E_{\nu}} \sin \frac{\Delta m_{13}^{2} L}{4E_{\nu}} \sin \frac{\Delta m_{12}^{2} L}{4E_{\nu}} \longrightarrow CP-\text{odd}$$

$$+ 4s_{12}^{2} c_{13}^{2} (c_{13}^{2} c_{23}^{2} + s_{12}^{2} s_{23}^{2} s_{13}^{2} - 2c_{12} c_{23} s_{12} s_{23} s_{13} \cos \delta) \sin^{2} \frac{\Delta m_{12}^{2} L}{4E_{\nu}} \longrightarrow CP-\text{odd}$$

$$- 8c_{13}^{2} s_{13}^{2} s_{23}^{2} \cos \frac{\Delta m_{23}^{2} L}{4E_{\nu}} \frac{aL}{4E_{\nu}} \sin \frac{\Delta m_{13}^{2} L}{4E_{\nu}} (1 - 2s_{13}^{2}), \longrightarrow De^{2} \Delta m_{12}^{2} L \longrightarrow De^$$

Experimental methods

 $P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \delta_{\alpha\beta} - 4\sum_{i>j} \operatorname{Re}(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*})\sin^{2}\Phi_{ij} \mp 2\sum_{i>j} \operatorname{Im}(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*})\sin 2\Phi_{ij}$

Current experiments

about 500 members 59 institutions from 11 countries

Tokyo

LONG-BASELINE NEUTRINO OSCILLATION EXPERIMENT

JAPAN

Super-K

Toyama

Kamioka Mine

JPARC

Tokai

Tokyo/Narita Airport

16th Baksan School

Far detector

SK events

16th Baksan School

T2K data

ν -mode :14.9x10²⁰ POT , $\overline{\nu}$ -mode : 16.3x10²⁰ POT

T2K data and expectation

Sample		Monte Carlo Predicted			Observed	Systematic	
	$\delta_{_{\rm CP}} = -\pi/2$	$\delta_{CP} = 0$	$\delta_{_{\rm CP}} = +\pi/2$	$δ_{CP} = π$		for prediction	
ν mode μ-like	272.4	272.0	272.4	272.8	243	5.1%	
⊽ mode μ-like	139.5	139.2	139.5	139.9	140	4.5%	alcappearance
v mode e-like	74.4	62.2	50.6	62.7	75	8.8%	
⊽ mode e-like	17.1	19.4	21.7	19.3	15	7.1%	appearance
ν mode e-like + $1\pi^+$	7.0	6.1	4.9	5.9	15	18.4%	

T2K results

T2K v_e / anti- v_e

T2K v_e / anti- v_e + reactor θ_{13}

T2K: search for CP violation

CP-conservation hypothesis (sin $\delta_{CP} = 0, \pi$) excluded at 2σ level

- First hint for CP violation in the lepton sector
- T2K data favour $\delta_{CP} \sim -\pi/2$ and normal hierarchy

Future plans

T2K expected to accumulate 7.8x10²¹ POT around 2021 (now 3x10²¹ POT)

- Upgrade of near detectors to improve systematic uncertainties 18% (2011) → 9% (2014) → 5% (2018) → goal ≤4% (2021)
- Plan to increase the beam intensity up to 1 MW in 2021
- Beam power up to 1.3 MW in ~2028
- T2K-II: proposed extension up to 2027 for $20x10^{21}$ POT 3σ sensitivity to CP violation for $\delta_{CP} \sim -\pi/2$

on-axis

40

20

1560 cm $4 \text{ cm} \times 6 \text{ cm}$

Taking data since Summer 2014 Study of $v_{\mu} \rightarrow v_{\mu}$ and $v_{\mu} \rightarrow v_{e}$ oscillations

0.3-kton version of

→ 20,000 channels

the same

16th Baksan School

from 32 cells

NOvA: event topology

D.Mendez Moriond 2019

Neutrino beam: 8.9×10^{20} POTAntineutrino beam: 6.9×10^{20} POT

Events in Far Detector

Neutrino beam:

- Observe 113 events
- Expect 730 +38/-49(syst.) w/o oscillations

Antineutrino beam:

- Observe 65 events
- Expect 266 +12/-14(syst.) w/o oscillations

NOvA: v_e /anti- v_e

NOvA results

Prospects for NOvA

OPERA: final result

 $v_{\mu} \rightarrow v_{\tau}$ appearance

PRL 120 (2018) 211801

10 v_{τ} events observed for 18×10^{19} POT Expected 6.4 events for $\Delta m_{23}^2 = 2.5 \times 10^{-3} \text{ eV}^2$, $\sin^2 2\theta_{23} = 1.0$ Expected background 2.0 ± 0.4 events

Significance of v_{τ} appearance 6.1 σ

OPERA: $\Delta m_{23}^2 = (2.7 + 0.7 - 0.6) \times 10^{-3} \text{ eV}^2$, assuming $\sin^2 2\theta_{23} = 1.0$

IceCube

Neutrinos have the first maximum of disappearance at about 25 GeV Energy threshold of Deep Core = 5 GeV

Data taking for 3 years

 $\Delta m_{32}^2 = (2.31 + 011 - 0.13) \times 10^{-3} \text{ eV}^2$

PRL 120 (2018) 071801

 $\sin^2\theta_{23} = 0.51 + 0.07 - 0.09$ for NH

16th Baksan School

Oscillation parameters: $\Delta m_{32}^2 - \sin^2\theta_{23}$

M.Yokoyama ICHEP2018

Reactor experiments

Oscillation results

Daya Bay

 $\sin^2 2\theta_{13} = 0.0856 \pm 0.0029$ $|\Delta m_{ee}^2| = (2.52 \pm 0.07) \times 10^{-3} \text{ eV}^2$ Liang Zhan, ICHEP2018

Future LBL Projects

- Reactor experiment JUNO

- Accelerator LBL experiment DUNE
- HyperKamiokande and T2HK

Reactor experiment JUNO China

• <1% energy scale uncertainty

d=43.5 m

Yury Kudenko INR RAS, Moscow

20" PMT

JUNO goals

Main goal: determination of neutrino mass hierarchy

PRD 88, 013008 (2013)	Hierarchy discrimination power	With info on Δm ² _{µµ} from LBL expts
Statistics only	4σ	5σ
Realistic case	3σ	4σ

Oscillation Parameter	Current accuracy (global 1σ)**	Dominant experiment(s)	JUNO Potentiality
Δm^2_{21}	2.3%	KamLAND	0.59%
$\Delta m^2 = m_3^2 - rac{1}{2} \left(m_1^2 + m_2^2 ight) $	1.6%	MINOS, T2K	0.44%
$\sin^2(\theta_{12})$	~4-6%	SNO	0.67%

Supernova neutrino Geoneutrinos Solar neutrinos

LBNF/DUNE Project

Flagship FNAL project

Main goals: - discovery of CP violation in leptonic sector

- neutrino mass hierarchy at $>5\sigma$ level
- neutrino astronomy
- proton decay search

Far detector 40 kt (4 x 10kt) LAr TPC

3288 C ()332

31 countries 177 institutions >1000 collaborators

$$\begin{split} &\mathsf{E}_{\mathrm{p}} = 60\text{-}120 \; \text{GeV} \\ &\mathsf{Beam power} \; 1.2 \ \text{->} \; 2.4 \; \text{MW} \\ &\mathsf{On axis neutrino beam} \\ &\mathsf{E}_{\mathrm{V}} \sim 1\text{-} \; 6 \; \text{GeV} \\ &\mathsf{L} \text{=} 1300 \; \text{km from FNAL to} \\ &\mathsf{SURF, S.Dakota} \end{split}$$

2022 – installation of 1st far detector 2024 – 2 modules operational 2026 – deliver neutrino beam

16th Baksan School

Single and

Dual

phase

detectors

Yury Kudenko INR RAS, Moscow

HyperKamiokande

Japan

HyperK: 1 water tank

12 countries 70 institutes ~300 members Expected data taking start 2026

> Upgrade of JPARC to 1.3 MW beam power
> New/upgrade of near

neutrino detectors

J-PARC

Main goals: - Search for CP violation - Proton decay

- Neutrino astrophysics

10 years of running:

- 8σ for $\delta_{CP} = -\pi/2$ - 80% coverage of δ_{CP} parameter space with >30° - $p \rightarrow \pi^0 e^+ > 10^{35} y$

Water tank 60 m(H)x74m(D) Total volume 260 kt Fiducial volume 190 kt ~10xSuperK PMT coverage 40% 40000 PMTs

16th Baksan School

Expected sensitivity to CP

Significance for $\delta_{CP} = -\pi/2$ Known MH

Light sterile neutrinos

Neutrino anomalies

LSND/MiniBooNe anomaly

Gallium and Reactor anomalies

These anomalies can be interpreted as oscillations involving sterile neutrino with $\Delta m^2 \sim 1 \text{ eV}^2$

16th Baksan School

Sterile neutrino?

Parameter space for v_s

LSND/MiniBooNe

Reactor/Gallium

Sterile v's: Daya Bay + MINOS+ Bugey-3

PRL117 (2016) 151801

 10^{2} Daya Bay data 90% C.L. Allowed • Constrains Δm_{41}^2 (mainly 10⁻⁴ to – MiniBooNE 10^{-1} eV^2) and $\sin^2 2\theta_{14}$ 10 – MiniBooNE (⊽ mode) Bugey-3 data • constrains Δm_{41}^2 (mainly 10⁻¹ to 10 eV²) and $\sin^2 2\theta_{14}$ ∆m²₄₁ (eV²) ___01 MINOS data • Constrains Δm_{41}^2 (mainly 10⁻³ to $10^2 \,\mathrm{eV^2}$) and $\sin^2 \theta_{24}$ **10**⁻² Combined all three 90% C.L. (CL_s) Excluded **10**⁻³ • Constrains Δm_{41}^2 and – NOMAD KARMEN2 $\sin^2 2\theta_{\mu e} = \sin^2 2\theta_{14} \cdot \sin^2 \theta_{24}$ MINOS and Daya Bay/Bugey-3 10⁻⁴ 10⁻³ 10^{-6} 10⁻⁵ 10⁻⁴ 10⁻² **10**⁻¹ $\sin^2 2\theta_{\mu e} = 4|U_{e4}|^2|U_{\mu 4}|^2$

Sterile v's: IceCube

PRL 117 (2016) 071801

Ev = 320 GeV - 20 TeV

sterile neutrinos produce distortions of $\nu\mu$ + anti- $\nu\mu$ flux (energy and angle) in the range $0.01 \le \Delta m^2 \le 10 \text{ eV}^2$

1 year of data statistics limited

Result compatible with no-sterile hypothesis

16th Baksan School

SBL reactor experiments (I)

DANSS, (I.Alexeev et al. PL B787 (2018) 56) Kalinin power station 3.1 GW Segnebted detector 1 m3

NEOS (PRL 118 (2017) 121802) Korea, Reactor 2.8 GW Active zone Ø3.1 м h=3.8 м Detector 1t LS + Gd

Reactor anomaly excluded at 5 σ

No evidence for ν_s with mass ~ 1 eV

16th Baksan School

SBL reactor experiments (II)

16th Baksan School

Daya Bay: anti-neutrino flux

PRL 118 (2017) 251801

This discrepancy gives an overestimation of predicted antineutrino flux by 7.8%.

U-235 is a possible source of the Reactor Anomaly?

Short baseline experiments at U-enriched reactors are needed

New MiniBooNe result

Sterile v's: « pro» and « con»

LSND/MinBooNe Reactor anomaly Ga anomaly

MINOS Disappearance MINOS/Daya Bay/Bugey combined result IceCube NEOS DANSS Neutrino-4 STEREO

Problem to be solved soon

FNAL: Short Baseline Neutrino program

arXiv:1503.01520

Detector	Distance from BNB Target	LAr Total Mass	LAr Active Mass
LAr1-ND	110 m	220 t	112 t
MicroBooNE	470 m	170 t	89 t
ICARUS-T600	600 m	760 t	476 t

16th Baksan School

Conclusion

Neutrino oscillations – new physics beyond SM

Current LBL experiments T2K + NOvA main goals: CP violation (3σ), Mass Hierarchy, θ_{23} T2K: first hint of CP violation in lepton sector

Next generation experiments:discovery/measurement of CPviolation, determination of Mass HierarchyJUNO(MH)under construction

DUNE(CP, MH)**HyperK and T2HK**(CP)

under construction approved approval in progress

Light sterile neutrinos:

- no positive signal from running experiments
- crucial tests are coming

Thank you for attention!

Backup slides

NOvA: v_e and anti- v_e appearance

Single-phase LAr TPC

1st 10 kt module of DUNE - single-phase TPC
6m x 2.3 m anode and cathode planes 3.6 m spacing
Photon detectors – light guides + SiPMs embedded in APAs

LAr detectors at CERN Neutrino Platform

NP02: WA105 (DP demonstrator + ProtoDUNE DP)

S.Murthy, talk at TPC-2016

Demonstrator: $3x1x1 m^3 - 5 tons$

ProtoDUNE DP: 6x6x6 m³

Cosmic data taking gas begun

Measurements with test beam in 2018

16th Baksan School

Second tank in Korea

arXiv:1611.06118

Source experiments

BEST

3 MCi ⁵¹Cr source

Two-zone 50 t liquid Ga metal target

J.Phys.Conf.Ser. 798 (2017) 012113

SOX (terminated)

Ultra-low radioactive background

- Spatial resolution: 12 cm @ 2 MeV
- Energy resolution: ~3,5% @ 2 MeV

¹⁴⁴Ce-¹⁴⁴Pr v_e source (100-150 kCi)

Source will be produced at Mayak, Russia

Start data taking in 2018

PRD 91 (2015) 072005

16th Baksan School