Particles and Cosmology

1 6th Baksan School on Astroparticle Physics

Machine Learning In
Astroparticle Physics

Oleg Kalashev
Institute for Nuclear Research, RAS

| ecture 1
April 10-18, 2019

Overview

e |ntroduction to ML. Data Analysis and Tools
e Artificial neural networks (ANN) intro. Feed-forward ANN
e Optimizing ANN.

e Hackathon (solving real problem)

e ML applications in astroparticle physics

16th Baksan School on Astroparticle Physics April 10-18, 2019

What is Machine Learning

Traditional programming

Data >

Computer > Output

Program >

program = algorithm + data structure

Automating a task by writing rules for a computer to follow

2+ 3 > L

What is Machine Learning

Traditional programming

Data >
Computer > Output
Program >

program = algorithm + data structure

Automating a task by writing rules for a computer to follow

2+3 » 5 Output = Z Input

Good for relatively simple rules

What is Machine Learning

Traditional programming

Data >

Computer > Output

Program >

program = algorithm + data structure

Automating a task by writing rules for a computer to follow

2+3 » 5 Output = Z Input

SO0H [/ 9 & > 504192

Many examples

The more diverse is the data the more complicated and less effective is the algorithm

What is Machine Learning

Traditional programming

Data >

Computer > Output

Program >

program = algorithm + data structure

Automating a task by writing rules for a computer to follow

Machine learning

Data

Computer > Program

Output

A step further: automate the task of writing the rules based on
data

Machine Learning Tasks

Unsui Reinforcement
Learning

Learning

Supervised

Learning

Supervised Machine
Learning Tasks

1

oo xd) - sample features known

r € X -sample €Tr = (QIZ

Yy € Y - answer (sample property which we want to predict)

X = (x4, yz')f;zl training set is used to findamodel Yy = a(x),a € A

by minimising loss (cost) function Q(a, X) : a,(:z:') — argminaEAQ(a, X)

Regression: predict real value Classification: predict class
yeR y e {0,1,...N}
///
180 /‘
*5
//
//

160 /

40 60 80 100

Linear Regression

a(z) = wo + ijwj or a(x)= Zwixj = (w,x) where zy=1
j=1 -

Choice for Q: |a(x) — y| -notsmooth, (a(x) — y)* is ok

L1 oo Lpd
Analytic solution w, = (X' X)) ' X?y. requires O(d?’) operations

Alternative: numerical optimisation

Y1

Ye

Linear Regression

optimisation with gradient decent method

« start with some random or zero W

2

- at step t-7 calculate loss function gradient VwQ(w, X) — ZXT (Xw _ y)
t t

. update weights w' = w!™! — ntVQ(wt_l,X) and repeat

small steps big steps

Stochastic Gradient Decent

2

VuQw, X) = - X" (Xw —y)

14

- expensive (requires calculation of loss term for each sample)

Alternative:

on each step select random sample {SE z}

w' = w' ™t =, VQw ! {a})

repeat until e.g. Hwt — wt_l H < €

adjust weights

300

250

200

150

100

50

0

\

exact GD

20 40

60 80 100

Loss function
dependence on
iteration number

longer step

more steps /

good for online training

stochastic GD |

5

-5 H -
7 H \ -
8l w i

l,
o
-9t -
-10 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500

Mini-batch Gradient Decent

Exact gradient decent: wt = wt_l — ntva(w, {;El, o aj‘l})
t t—1 t—1

Stochastic gradient decent: w = w — ﬂtVQ(w ; {CUL})

Mini-batch gradient decent: approximate GD using m samples

wt — wt_l — ntva(wa {x(t—l)ma SR ZCtm})

Ilterate through training entire training set in //m steps (epoch) and then repeat

Linear Classification

Y={{-1,+1} replace regression model a() = wy + Z w7

with a(x) = sign | wg + Zw]xj

Loss function J=1

Z a(z;) 2] has step

1=1 "
The hyperplane (w,z) = 0 separates points of different classes
Y; (w, :l’}@> X distance from plane

Yi <w, 337,> < (0 for wrong answers
Y; <@U, $Z> > () for correct answers

Possible smooth loss function:

[
1 L w,T) =
—2 > yiw,)) =0
1=1

Practical part

ML and data analysis
packages

Python (numpy, pandas, matplotlib, sklearn, tensorflow,
pytorch, keras, etc.)

R (rpart, CARET, nnet, neuralnet, RSNNS, etc.)
Matlab/Octave (LIBSVM, LIBLINEAR, NN, etc.)
Java/scala (JDMP, DL4J, Spark MLlib, etc.)

C++ (CERN ROOT, Boost.uBLAS, Dlib, stats++,
tensorflow, torch, CNTK, Caffe, etc.)

Why Python

Free

Multiplatform

Easy to learn

Interpreted (can be executed interactively in shell)
Lots of packages

Among the most popular in data science

Running Python Samples

* Preinstalled virtualbox Ububtu 16.04 environment (recommended)

- download from http://tiny.cc/uz404y

 virtualbox software needed and 64bit OS

- Manually install python environment (see next slide)

To activate the python environment, run in terminal:
source init.sh

To start jupyter notebook:
Jupyter notebook

The code samples will be uploaded on school web page

http://tiny.cc/uz404y
https://www.virtualbox.org/wiki/Downloads

Python environment setup

List of libraries required:

tensorflow (ver. 1.12), matplotlib, pandas, keras, hSpy, sklearn, jupyter, pillow, seaborn
Approximate instructions:

e - install miniconda for your platform from https://docs.conda.io/en/latest/miniconda.html (at this
step you may choose either Python 2.7 or Python 3.7 based miniconda version)

e - open command shell window and create Python 3.5 virtual environment with the following
shell commands

e conda create --name ML python=3.5
e conda activate ML
* pip install --upgrade pip

e pip install tensorflow==1.12 matplotlib pandas keras hSpy sklearn jupyter pillow seaborn

https://docs.conda.io/en/latest/miniconda.html

