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Practical Task
Classification of gamma-ray sources

Source: FERMI LAT 3FGL catalog
Task: use source features to predict source class (discriminate between blazars

and pulsars)
Data: ~3000 objects ~1000 of which are not identified

column description:

1. object name (3FGL prefix omitted)

2. equatorial coordinates: Right Ascencion, deg

3. equatorial coordinates: Declination, deg

4-29. spectral and variability parameters

30. Source type code or NULL for unidentified sources.
Blazars: bll,BLL,bcu,BCU,fsrq,FSRQ.
Pulsars: psr, PSR.



Time to open jupyter
notebook



Gradient Descent Optimization
w=w —10- Vu,C(w)

Problem: gradient strongly oscillates between mini-batches
Possible solution - momentum: Vi = YUp—1 + anC’(w)

W =W — Uy v~ 0.9

Image 2: SGD without momentum Image 3: SGD with momentum

Nesterov accelerated gradient (NAG): v; — YU;_1 + nva (w — ’th—l)
Nesteroy, Y. (1983)
W = W — V¢



Gradient Descent Optimization
w=w —10- Vu,C(w)

Problem: gradient strongly oscillates between mini-batches
Possible solution - momentum: Vi = YUp—1 + anC’(w)

W =W — Uy v~ 0.9

helps to skip the local minima

exercise:
test the method on mt. Elbrus slopes

Nesterov accelerated gradient (NAG): v; — YU;_1 + nva (w — ’th—l)
Nesteroy, Y. (1983)
W = W — V¢



Gradient Descent Optimization

Idea: adapt our updates to each individual parameter to perform
smaller updates for parameters associated with frequently
occurring features, and larger updates for parameters associated

with infrequent features

AdaDelta - Adaptive Learning Rate Method Zeiler (2012)

RMS[AU}]t_l
Aw; = w
W= psvLC, et
Weg1 = Wy + Awy RMS[V,,C] = /E[(V4,C)?]

RMS[Vw C] and RMS[Aw] could be estimated either using last N points or

as a decaying average:

E[(VWC)?t = vE[(VWwC)? i1 + (1 — 3)(VWC)? ~ ~ 0.9



Time to open jupyter
notebook



Ways to avoid overfitting
(model regularization)

Overfitting: more complex models tend to adjust to particular training examples
and lose predictive power

exercise:
plot the distribution of the weight absolute values in the overfitted model

L1, L2 regularisation: introduce extra penalty for large weights in loss function

1
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Nw - number of weights in the model



Ways to avoid overfitting
(model regularization)

Early Stop: monitor loss/accuracy on separate
validation data and stop training when it begins to drop
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Regularization

Dropout: randomly disable fraction of neurons when training

Srivastava et. al IMLR 15 (2014)
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® [N training mode neurons are switched oft with probability p

e For p=0.5 we train simultaneously 27 thinned neural networks

* |n prediction mode neurons are on but their output weights
are multiplied by p (we average predictions of thinned nets)



L1,L2 regularization
Bayesian interpretation

P(y|w)P(w) posterior = likelihood - prior
P(y) evidence

Bayes Theorem: P(w|y) =

Maximum a posteriori probability estimate (MAP):

: P(y|lw)P(w)
w = arg max P(w|y) = arg max
MAP & ” ( ‘ ) "y P(y)
= arg max P(y|w)P(w) = arg max log(P(y|w)P(w))
= arg max|log P(y|w) + log P(w)|

Regularization can be interpreted as prior log P (w)

L2 - regularisation: P(w) X € 202 (normal distribution)

L1 - regularisation: P (w) xe b (Laplace distribution)



