

Particles and Cosmology

16th Baksan School on Astroparticle Physics

Machine Learning in Astroparticle Physics

Oleg Kalashev Institute for Nuclear Research, RAS

Lecture 3

Practical Task Classification of gamma-ray sources

Source: FERMI LAT 3FGL catalog

Task: use source features to predict source class (discriminate between blazars

and pulsars)

Data: ~3000 objects ~1000 of which are not identified

column description:

- 1. object name (3FGL prefix omitted)
- 2. equatorial coordinates: Right Ascencion, deg
- 3. equatorial coordinates: Declination, deg
- 4-29. spectral and variability parameters
- 30. Source type code or NULL for unidentified sources.

Blazars: bll,BLL,bcu,BCU,fsrq,FSRQ.

Pulsars: psr, PSR.

Time to open jupyter notebook

Gradient Descent Optimization

$$w = w - \eta \cdot \nabla_w C(w)$$

Problem: gradient strongly oscillates between mini-batches

Possible solution - momentum:

$$v_t = \gamma v_{t-1} + \eta \nabla_w C(w)$$
$$w = w - v_t \qquad \gamma \simeq 0.9$$

Nesterov accelerated gradient (NAG): $v_t = \gamma v_{t-1} + \eta \nabla_w C(w - \gamma v_{t-1})$ Nesterov, Y. (1983) $w = w - v_t$

Gradient Descent Optimization

$$w = w - \eta \cdot \nabla_w C(w)$$

Problem: gradient strongly oscillates between mini-batches

Possible solution - momentum:

$$v_t = \gamma v_{t-1} + \eta \nabla_w C(w)$$

$$w = w - v_t \qquad \gamma \simeq 0.9$$

helps to skip the local minima

exercise:

test the method on mt. Elbrus slopes

Nesterov accelerated gradient (NAG): Nesterov, Y. (1983)

$$v_t = \gamma v_{t-1} + \eta \nabla_w C(w - \gamma v_{t-1})$$
$$w = w - v_t$$

Gradient Descent Optimization

Idea: adapt our updates to each individual parameter to perform smaller updates for parameters associated with frequently occurring features, and larger updates for parameters associated with infrequent features

AdaDelta - Adaptive Learning Rate Method Zeiler (2012)

$$\Delta w_t = -\frac{RMS[\Delta w]_{t-1}}{RMS[\nabla_w C]_t} \nabla_w C_t$$

$$w_{t+1} = w_t + \Delta w_t$$

$$RMS[\nabla_w C] \equiv \sqrt{E[(\nabla_w C)^2]}$$

 $RMS[\nabla_w C] \ {
m and} \ RMS[\Delta_w]$ could be estimated either using last N points or as a decaying average:

$$E[(\nabla_w C)^2]_t = \gamma E[(\nabla_w C)^2]_{t-1} + (1 - \gamma)(\nabla_w C)_t^2 \qquad \gamma \simeq 0.9$$

Time to open jupyter notebook

Ways to avoid overfitting (model regularization)

Overfitting: more complex models tend to adjust to particular training examples and lose predictive power

exercise:

plot the distribution of the weight absolute values in the overfitted model

L1, L2 regularisation: introduce extra penalty for large weights in loss function

$$C = \dots + \lambda_1 \frac{1}{N_w} \sum_{w} |w|$$

$$C = \dots + \lambda_2 \frac{1}{N_w} \sum_{w} w^2$$

 $N_w\,$ - number of weights in the model

Ways to avoid overfitting (model regularization)

Early Stop: monitor loss/accuracy on separate validation data and stop training when it begins to drop

Regularization

Dropout: randomly disable fraction of neurons when training

Srivastava et. al JMLR 15 (2014)

- In training mode neurons are switched off with probability p
- For p=0.5 we train simultaneously 2^n thinned neural networks
- In prediction mode neurons are on but their output weights are multiplied by p (we average predictions of thinned nets)

L1,L2 regularization Bayesian interpretation

Bayes Theorem:
$$P(w|y) = \frac{P(y|y)}{P(y|y)}$$

Bayes Theorem:
$$P(w|y) = \frac{P(y|w)P(w)}{P(y)}$$
 posterior = $\frac{\text{likelihood} \cdot \text{prior}}{\text{evidence}}$

Maximum a posteriori probability estimate (MAP):

$$\hat{w}_{\text{MAP}} = \arg \max_{w} P(w|y) = \arg \max_{w} \frac{P(y|w)P(w)}{P(y)}$$

$$= \arg \max_{w} P(y|w)P(w) = \arg \max_{w} \log(P(y|w)P(w))$$

$$= \arg \max_{w} [\log P(y|w) + \log P(w)]$$

Regularization can be interpreted as prior $\,\log P(w)$

$$P(w) \propto e^{-\frac{w^2}{2\sigma^2}}$$
 (normal distribution)

L1 - regularisation:

$$P(w) \propto e^{-\frac{w}{b}}$$

(Laplace distribution)