

OPERA neutrino event subsamples @ CERN Open Data Portal

S.Dmitrievsky, JINR, Dubna

16th Baksan School on Astroparticle Physics, Baksan Valley, Kabardino-Balkaria, Russia, 2019/04/11

Goals of the OPERA experiment

Scientific Background on the Nobel Prize in Physics 2015

NEUTRINO OSCILLATIONS

Super-Kamiokande's oscillation results were later confirmed by the detectors MACRO [55] and Soudan [56], the long-baseline accelerator experiments K2K [57], MINOS [58] and T2K [59] and more recently also by the large neutrino telescopes ANTARES [60] and IceCube [61]. Appearance of tau-neutrinos in a muon-neutrino beam has been demonstrated on an event-by-event basis by the OPERA experiment in Gran Sasso, with a neutrino beam from CERN [62]. [PRL 115, 121802 (2015)]

The main goal:

the first *direct observation* of v_{τ} appearance in a pure v_{μ} beam through the detection of the short-lived τ leptons produced in v_{τ} charged-current (CC) interactions.

Since its discovery, the phenomenon of neutrino oscillations is being studied mostly in *disappearance* mode.

Observation of the *appearance* of oscillated neutrinos consistent with the disappearance results was also a very important issue.

Expanded physics program:

- oscillation physics:
 - $\nu_{\mu} \rightarrow \nu_{e}$ study
 - sterile neutrino analysis
- non-oscillation physics:
 - charged particle multiplicity analysis
 - cosmic ray physics

CNGS neutrino beam

The beam was optimized to maximize the number of v_{τ} CC interactions in the detector

OPERA hybrid detector

OPERA hybrid detector

CERN Open Data Portal

22nd of May 2018: release of the first set of OPERA data samples.

OPERA became the first non-LHC experiment presented in the portal.

v_{τ} event sample

10 v_{τ} -candidate events observed in the $\tau \rightarrow h, \tau \rightarrow 3h$, and $\tau \rightarrow \mu$ channels.

Results of a dedicated analysis, with a detailed classification of all particles produced in the neutrino interactions, has been presented.

INUTau Event: 9234119599 Image: Constructed in emulsion Image: Constructed in emulsion Image: Constructed in emulsion Event: 9234119599, Aug 22, 2009, 19:27 (UTC), Tracks reconstructed in emulsion Image: Constructed in emulsion Image: Construlit emulsin Image: Constructed in emulsi

 V_{τ} -candidate event reconstructed in the nuclear emulsions

Channel	Expected Background				Exp. Signal	Observed
	Charm	Had. re-interaction	Large μ -scat.	Total		
$\tau \to 1h$	0.15 ± 0.03	1.28 ± 0.38	_	1.43 ± 0.41	2.96 ± 0.59	6
$\tau \to 3h$	0.44 ± 0.09	0.09 ± 0.03	—	0.53 ± 0.12	1.83 ± 0.37	3
$\tau ightarrow \mu$	0.008 ± 0.002	—	0.02 ± 0.008	0.03 ± 0.01	1.15 ± 0.23	1
$\tau \to e$	0.035 ± 0.007	—	—	0.03 ± 0.007	0.84 ± 0.17	0
Total	0.63 ± 0.13	1.37 ± 0.41	0.02 ± 0.008	2.0 ± 0.5	6.8 ± 1.4	10

* expectations for *full mixing* and $\Delta m_{32}^2 = 2.50 \times 10^{-3} eV^2$

IPRL 120 (2018) 2118011

Probability to be explained by background: 4×10^{-10}

This corresponds to 6.1σ significance of non-null observation

$v_{\mu}CC$ event sample

817 ν_{μ} CC events where a muon was reconstructed in the final state.

The events were selected for study of charged hadron multiplicities in CC neutrino-lead interactions.

Data-MC comparison of the charged hadron multiplicity

The charged hadrons multiplicity dispersion

as a function of mean number of tracks

OPERA data for the two event samples

opendata.cern.ch/search?page=1&size=20&experiment=OPERA&file_type=zip

Filter by experiment	4	Electronic detector data for multiplicity studies
Filter by year 2009-2012 2010-2012	2	The dataset was extracted from the official OPERA data repository. It contains 817 muon neutrino interactions with the lead target where a muon was reconstructed in the final state. This happens in th
Filter by file type	024	Dataset Derived OPERA
iii csv iii pdf i iii zip	2	Electronic detector data for tau neutrino appearance studies
		the electronic detectors for the ten tau neutrino candidates, identified after an extensive analys
		Dataset Derived OPERA
		Emulsion data for neutrino tau appearance studies
		This dataset was extracted from the official OPERA data repository and it contains all the emulsion data information for the ten tau neutrino candidates, identified after an extensive analysis that
		Dataset Derived OPERA
		Emulsion data for track multiplicity
		The dataset was extracted from the official OPERA data repository. It contains 817 muon neutrino interactions with the lead target where a muon was reconstructed in the final state. This happens in th
		Dataset Derived OPERA

csv-file examples: electronic detector data for the two samples

11 csv-files^{*} for each event: EventInfo.csv, RawTTHitsXZ.csv, RawTTHitsYZ.csv, FilteredTTHitsXZ.csv, FilteredTTHitsXZ.csv, RawRPCHitsXZ.csv, RawRPCHitsYZ.csv, FilteredRPCHitsXZ.csv, FilteredRPCHitsYZ.csv, RawDTHitsXZ.csv, FilteredDTHitsXZ.csv

Dataset Semantics (Description of the variables in the csv-files):

amplL:PMT amplitude measured from the "left" side of a scintillator strip (in photo-electrons) ampIR:PMT amplitude measured from the "right" side of a scintillator strip (in photo-electrons) amplRec:PMT amplitude reconstructed from the "left" and "right" side amplitudes of a scintillator strip taking into account light attenuation in a WLS fiber (in photo-electrons) clLength:cluster length (in cm) driftDist:drift distance (in cm) enHad:energy of a hadron jet (in GeV) enNeu:energy of a neutrino (in GeV) enVis:visible energy (in MeV) evID:event Id (11-digit number) **muMom:**momentum of a muon (in GeV/c) **posX:**X position of a drift tube, RPC, Target Tracker hit in the OPERA detector system of reference (in cm) **posY:** Y position of an RPC hit in the OPERA detector system of reference (in cm) **posZ**: Z position of a drift tube, RPC, Target Tracker hit in the OPERA detector system of reference (in cm) timestamp:event time in milliseconds since 01/01/1970

^{* &}lt;u>csv-file</u> is a delimited text file that uses a comma to separate values.

Summary & outlook

• First two OPERA data subsamples have been published on the CERN Open Data Portal:

- the "tau appearance sample" (10 ν_{τ} candidate events),
- the "multiplicity sample" (817 $\nu_{\mu}CC$ events).

• *Browser-based event display* has been developed and integrated to the portal for visualization of the published OPERA events.

• A dedicated paper with a detailed description of the two released data subsamples is almost ready to be applied for publication in the *Nature Scientific Data* journal.

• More data subsamples (e.g., V_e sample, cosmic muon sample) are planned to be released.

• Interactive tutorials (exercises for students, etc.) to be developed as well.

Backup slides

OPERA ECC brick

Basic unit of the OPERA detector was an 1 mm *Emulsion Cloud Chamber* module (ECC brick): sandwich of 57 emulsion films interleaved with lead plates + a separate box with a removable ν pair of films (CSd) 7.5 cm Pb 12.5 cm 8.3kg 2 emulsion layers $10X_{0}$ (44 µm thick) poured on a 10 cm 200 µm plastic base v beam

The ECC technique proved its efficiency and is going to be used in future experiments for V_{τ} registration (**DsTau**, **SHiP**, ...) and even for directional dark matter search (**NEWSdm**).

The OPERA target

Number of bricks:	~150'000
Total mass:	~1.2 kton
Total film surface:	~111'000 m ²

Emulsion scanning stations used in OPERA

EU: ESS (European Scanning System)

- Scanning speed/system: 20cm²/h
- Customized commercial optics and mechanics
- Asynchronous DAQ software

Japan: S-UTS (Super Ultra Track Selector)

- Scanning speed/system: 75cm²/h
- High speed CCD camera,

Piezo-controlled objective lens

• FPGA Hard-coded algorithms

Both systems demonstrated:

- ~0.3 µm spatial resolution
- ~2 mrad angular resolution
- ~95% base track detection efficiency

Status of data analysis

Discovery of V_{τ} appearance in the CNGS beam (2015)

Channel		Expected	Expected signal	Observed		
	Charm	Had. reinterac.	Large μ scat.	Total	Expected signal	Observed
$\tau \to 1h$	0.017 ± 0.003	0.022 ± 0.006		0.04 ± 0.01	0.52 ± 0.10	3
$\tau \to 3h$	0.17 ± 0.03	0.003 ± 0.001		0.17 ± 0.03	0.73 ± 0.14	1
$\tau \to \mu$	0.004 ± 0.001		0.0002 ± 0.0001	0.004 ± 0.001	0.61 ± 0.12	1
$\tau \to e$	0.03 ± 0.01			0.03 ± 0.01	0.78 ± 0.16	0
Total	0.22 ± 0.04	0.02 ± 0.01	0.0002 ± 0.0001	0.25 ± 0.05	2.64 ± 0.53	5

* expectations for *full mixing* and $\Delta m_{32}^2 = 2.44 \times 10^{-3} eV^2$

IPRL 115 (2015) 1218021 Observed in data: 5 events in the $\tau \rightarrow h$, $\tau \rightarrow 3h$, and $\tau \rightarrow \mu$ channels

Probability to be explained by background: 1.1×10^{-7}

This corresponds to 5.1σ significance of non-null observation

Disclaimer for the OPERA open data

(from opendata.cern.ch/docs/about-opera)

• The open data are released under the <u>Creative Commons CC0 waiver</u>. Neither OPERA nor CERN endorse any works, scientific or otherwise, produced using these data.

• All released data samples will have a unique DOI that you are requested to cite in any applications or publications.