

Particles and Cosmology

16th Baksan School on Astroparticle Physics

A-CDM Model and Inflation

Itziar Aldecoa Tamayo

UNIVERSITÄT LEIPZIG

Structure of the talk

- 1. A-CDM Model
- 2. Drawbacks of the Λ-CDM Model
- 3. Inflation

Assumptions

Assumptions

Assumptions

$$G^{(\Lambda)}_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu} = \kappa T_{\mu\nu}$$

Assumptions

$$G^{(\Lambda)}_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu} = \kappa T_{\mu\nu}$$

$$R_{\mu
u}\,$$
 $-$ Ricci tensor

- $g_{\mu
 u}\,$ metric tensor
 - $\Lambda-\mathrm{cosmological\ constant}$

$$T_{\mu
u}$$
 — stress-energy tensor $\kappa = rac{8\pi G_N}{c^4}$

Assumptions

Assumptions

- 1. Einstein field equations
- 2. Distribution of radiation and matter is isotropic and homogeneous

Assumptions

- 1. Einstein field equations
- 2. Distribution of radiation and matter is isotropic and homogeneous

Ideal fluid description

Assumptions

- 1. Einstein field equations
- 2. Distribution of radiation and matter is isotropic and homogeneous

Ideal fluid description

$$T_{\mu\nu} = (\rho + P)u_{\mu}u_{\nu} - P \eta_{\mu\nu}$$

Assumptions

- 1. Einstein field equations
- 2. Distribution of radiation and matter is isotropic and homogeneous

Ideal fluid description

$$T_{\mu\nu} = (\rho + P)u_{\mu}u_{\nu} - P\,\eta_{\mu\nu}$$

$$ho=
ho(au)-$$
 energy density
 $P=P(au)-$ isotropic pressure
 $\eta_{\mu
u}=diag(1,-1,-1,-1)$

Assumptions

- 1. Einstein field equations
- 2. Distribution of radiation and matter is isotropic and homogeneous

Assumptions

- 1. Einstein field equations
- 2. Distribution of radiation and matter is isotropic and homogeneous

+ Equations of state

Assumptions

- 1. Einstein field equations
- 2. Distribution of radiation and matter is isotropic and homogeneous

+ Equations of state

$$P = P(\rho)$$

1.
$$\tau \in I = (0,\infty)$$

Conclusions

1. $\tau \in I = (0,\infty)$

Conclusions

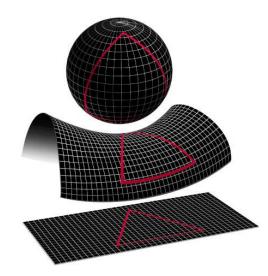
1. $au \in I = (0,\infty)$

2. Shape of the universe: flat

Conclusions

1. $au\in I=(0,\infty)$

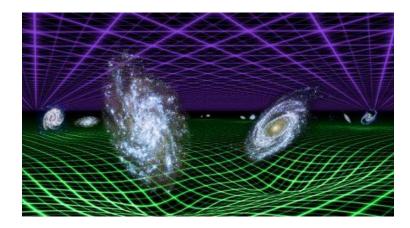
2. Shape of the universe: flat

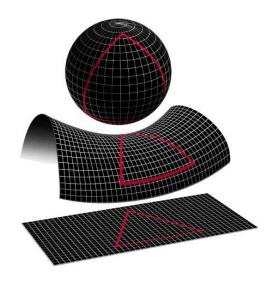


Conclusions

1.
$$\tau \in I = (0,\infty)$$

2. Shape of the universe: flat





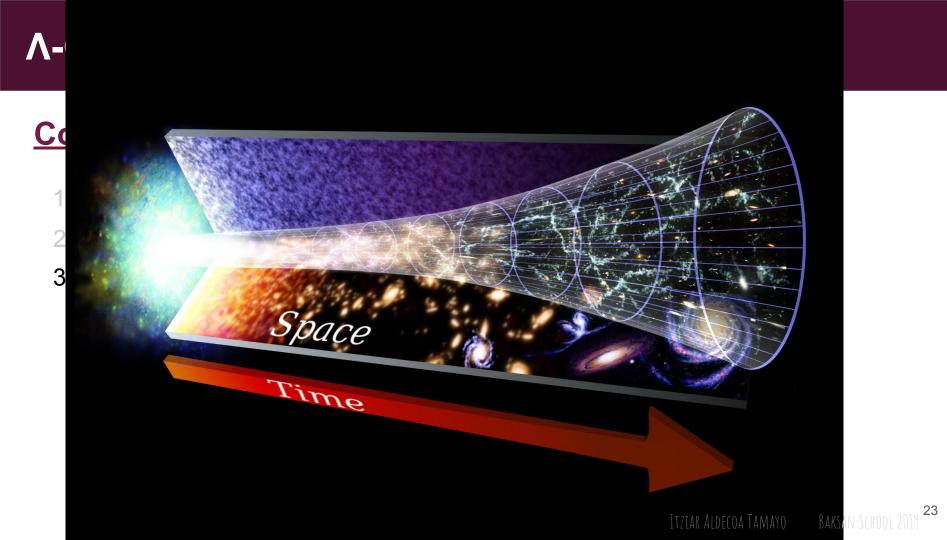
20

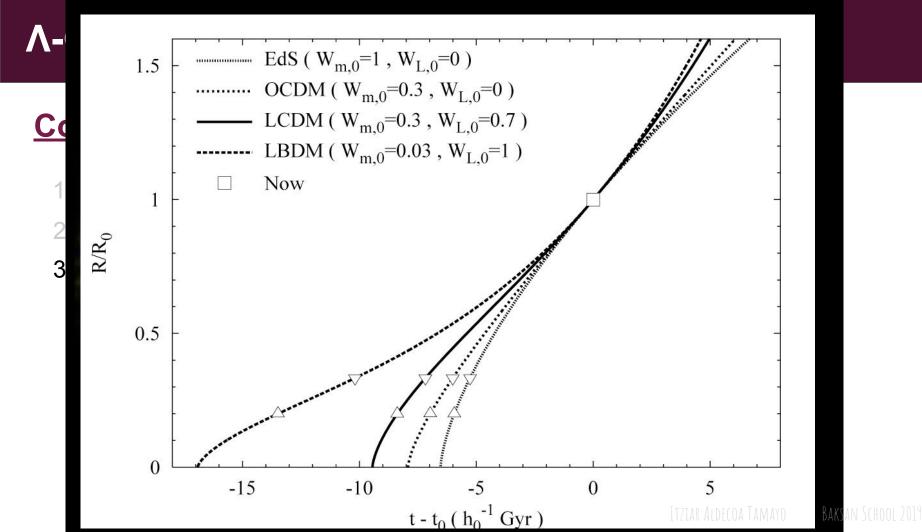
Conclusions

1.
$$\tau \in I = (0,\infty)$$

2. Shape of the universe: flat

- 1. $\tau \in I = (0,\infty)$
- 2. Shape of the universe: flat
- 3. Universe expands $\dot{a} > 0$

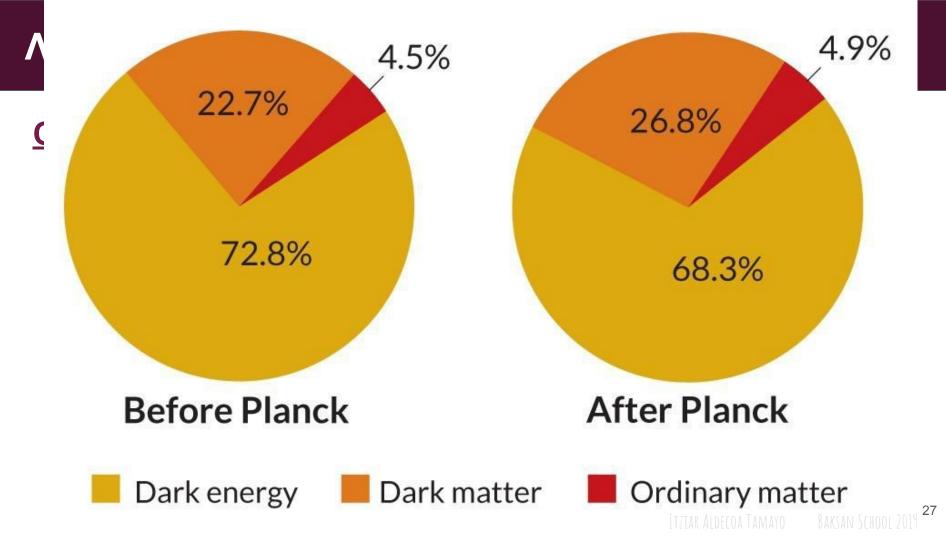




1.
$$\tau\in I=(0,\infty)$$

- 2. Shape of the universe: flat
- 3. Universe expands $\dot{a} > 0$

- 1. $\tau\in I=(0,\infty)$
- 2. Shape of the universe: flat
- 3. Universe expands $\dot{a} > 0$
- 4. Density parameters today



1.
$$\tau\in I=(0,\infty)$$

- 2. Shape of the universe: flat
- 3. Universe expands $\dot{a} > 0$
- 4. Density parameters today

Conservation laws:

$$H^2 \propto \rho$$

MD:
$$\rho \propto a^{-3}$$

RD: $\rho \propto a^{-4}$

$$s \propto a^{-3}$$

$$T \propto a^{-1}$$

DRAWBACKS OF THE MODEL

- 1. Flatness problem
- 2. Horizon problem
- 3. Relict particle problem

- 1. Flatness problem
- 2. Horizon problem
- 3. Relict particle problem

$$\Omega - 1 = \frac{k}{H^2 a^2}$$

$$\Omega - 1 = \frac{k}{H^2 a^2}$$

$$k = +1 \rightarrow \Omega > 1$$
 closed universe
 $k = 0 \rightarrow \Omega = 1$ flat universe
 $k = -1 \rightarrow \Omega < 1$ open universe

$$\Omega - 1 = \frac{k}{H^2 a^2}$$

Radiation dominated:

A-CDM MODEL

Conservation laws:

$$H^2 \propto \rho$$

MD:
$$\rho \propto a^{-3}$$

RD: $\rho \propto a^{-4}$

$$s \propto a^{-3}$$

$$T \propto a^{-1}$$

$$\Omega - 1 = \frac{k}{H^2 a^2}$$

Radiation dominated: $\Omega - 1 \propto rac{1}{a^2 a^{-4}} \propto a^2$

$$\Omega - 1 = \frac{k}{H^2 a^2}$$

Radiation dominated:
$$\ \ \Omega - 1 \propto rac{1}{a^2 a^{-4}} \propto a^2$$

Matter dominated:

A-CDM MODEL

Conservation laws:

$$H^2 \propto \rho$$

MD:
$$\rho \propto a^{-3}$$

RD: $\rho \propto a^{-4}$

$$s \propto a^{-3}$$

$$T \propto a^{-1}$$

$$\Omega - 1 = \frac{k}{H^2 a^2}$$

Radiation dominated:

Matter dominated:

$$\Omega - 1 \propto \frac{1}{a^2 a^{-4}} \propto a^2$$
$$\Omega - 1 \propto \frac{1}{a^2 a^{-3}} \propto a$$

$$\Omega - 1 = \frac{k}{H^2 a^2}$$

$$\frac{|\Omega - 1|_{\tau = \tau_{Pl}}}{|\Omega - 1|_{\tau = \tau_0}} \approx \mathcal{O}(10^{-64})$$

$$\Omega - 1 = \frac{k}{H^2 a^2}$$

$$\frac{|\Omega - 1|_{\tau = \tau_{Pl}}}{|\Omega - 1|_{\tau = \tau_0}} \approx \mathcal{O}(10^{-64})$$

Today $\Omega \sim 1$

ITZTAR ALDECOA TAMAYO BAKSAN SCHOOL 2019 43

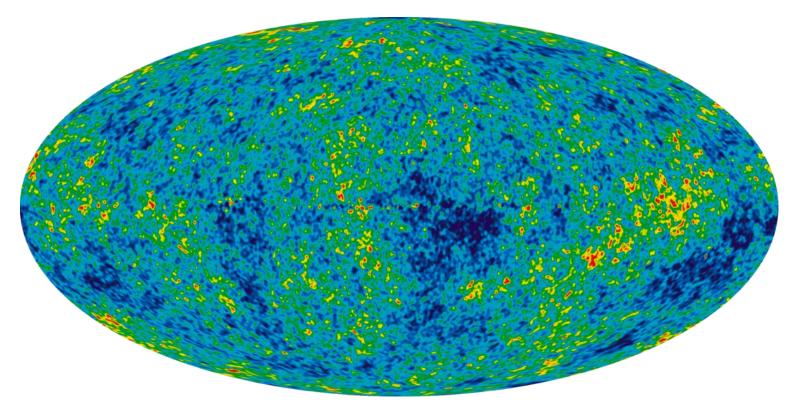
Flatness problem = fine-tuning problem

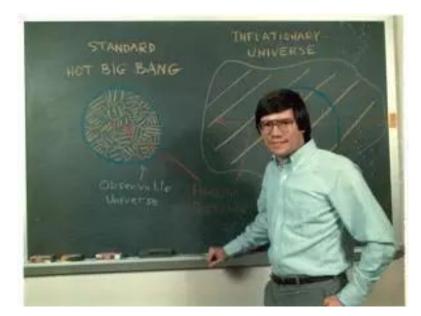
CMB \rightarrow Uniform to $\frac{\Delta T}{T} \sim 10^{-6}$

CMB — Uniform to
$$\frac{\Delta T}{T} \sim 10^{-6}$$

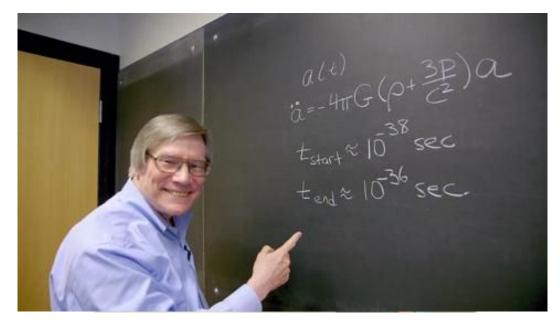
Causally disconnected $\sim 2^{\circ}$

ITZIAR ALDECOA TAMAYO BAKSAN SCHOOL 2019 47





Alan Guth (1979)



Alan Guth (2004)

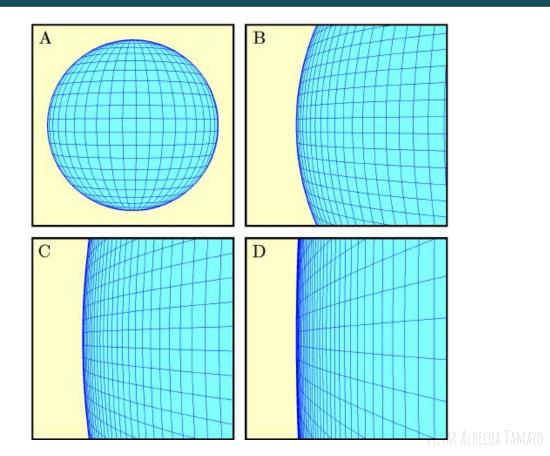
- What is it? Exponential expansion of space in the early universe
- **When did it happen?** Sometime between 10⁻³⁶s to 10⁻³²s after singularity
- How much did it last? 10⁻³⁵s

Size of the universe before inflation: one hundred billion times smaller than the size of a proton (10⁻²⁶m)

Size of the universe after inflation: size of a grapefruit (0,1 m)

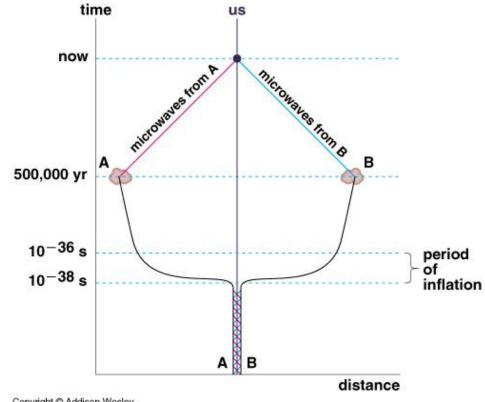
How does this solve the flatness and the horizon problem?

FLATNESS



BAKSAN SCHOOL 2019 **55**

HORIZON



Copyright C Addison Wesley.

56

Many models!

For the curious...

arXiv:1312.3529v3 [astro-ph.CO] 3 Jun 2014

Thank you for your attention!

Itziar Aldecoa Tamayo

UNIVERSITA LEIPZIG