Exercises for the multimessenger discussion

- 1. Derive the expression $\frac{dn}{d\Omega} \propto (1 \beta \cos \theta_1)$ for the collision rate between a cosmic ray and a cloud moving with the non-relativistic speed V. Note: the collision rate is proportional to the relative velocity. Use the fact that the cosmic ray is ultra-relativistic.
- 2. Find the minimal energy $E_{\rm th}$ of a proton scattering on a photon with the typical energy of the cosmic microwave background $(T \approx 2.7 \text{ K})$ for the process $p + \gamma \rightarrow p + \pi^0$. Guess the cross section of this reaction, check it against the curve at http: //pdg.lbl.gov, and estimate the mean free path of a proton with $E \gg E_{\rm th}$. Note: cross-sections for the resonance processes may be guessed with the use of Breit-Wigner formula.
- 3. Neutrinos from a type II supernova.

The proto-neutron formed during the core collapse of a massive star emits copiously neutrinos. Its mass is $\approx 1.4 M_{\odot}$, and its radius ≈ 15 km. Estimate the total (gravitational potential) energy E_b released. Apply the virial theorem $(-E_{\rm pot} = 2E_{\rm kin})$ to a nucleon N at the surface of the proto-neutron star and estimate its kinetic energy E_N . Estimate the number N_{ν} of neutrinos emitted and the duration of the neutrino signal (in the random walk picture) using $E_{\nu} = E_N/2$, $E_b = N_{\nu}E_{\nu}$ and $\sigma_{\nu} = 10^{-43} \text{cm}^2 (E_{\nu}/\text{MeV})^2$. For the case of SN1987A in the Large Magellanic Cloud at a distance of 50 kpc, how many neutrinos were observed (using the same σ_{ν}) in a detector with 10^{32} protons?