Plan of the lectures: Photons

- Basic observations
- Approaches
- Open questions and possible explanations:
 - Dipole anisotropy
 - Breaks and non-universality of primary nuclei spectra
 - Positron excess
 - Knee and the end of the Galactic CR spectrum

SNR: Leptonic versus hadronic models

3

- ICS and π^0 photons differ most below 100 MeV
- combining Fermi and IACT constrains models tightly

3

• CR scattering on gas or photons: $pp \rightarrow$ mesons, baryons $\rightarrow e, \gamma, \nu, p$

- the lightest mesons, π^0 and π^{\pm} , are produced most often
- decays: $\pi^0 \to 2\gamma$ and $\pi^\pm \to 3\nu + e^\pm$

• $\pi^0 ightarrow \gamma({m k}_1) + \gamma({m k}_2)$ at rest:

- energy conservation: $m_{\pi}/2 = E_1 = E_2$
- momentum conservation: $k_1 = -k_2$
- moving back-to-back

3

< 日 > < 同 > < 回 > < 回 > < 回 > <

•
$$\pi^0 \rightarrow \gamma({m k}_1) + \gamma({m k}_2)$$
 at rest:

- energy conservation: $m_{\pi}/2 = E_1 = E_2$
- momentum conservation: $k_1 = -k_2$
- moving back-to-back

• π^0 is moving:

- decay isotropic in rest-frame $\Rightarrow dn/dE_{\gamma} = \text{const.}$
- min./max. photon energies

$$E_{\min}^{\max} = \gamma \frac{m_{\pi^0}}{2} (1 \pm \beta) = \frac{m_{\pi^0}}{2} \sqrt{\frac{1 \pm \beta}{1 \mp \beta}}$$

• geometric mean $\sqrt{E_{\min}E^{\max}} = \frac{m_{\pi^0}}{2}$

< 日 > < 同 > < 回 > < 回 > < 回 > <

æ

æ

æ

æ

æ

The pion peak

- independent of velocity distribution of pions:
- \Rightarrow symmetric photon distribution w.r.t. $m_{\pi^0}/2$

э

< 47 ▶

The pion peak: pp interactions

- Iow threshold & approx. Feynman scaling
- $\Rightarrow dN_{\gamma}/dE \sim dN_{CR}/dE$

э

- A - TH - N

< A → <

• threshold $E_{
m th}\gtrsim m_\pi m_p/arepsilon_\gamma\sim 10^{17}\,{
m eV}$ with $arepsilon_\gamma\lesssim 10\,{
m eV}$

3

1 T 1

< A > <

$$dN_{\gamma}/dE \sim egin{cases} \sim E^{-1} & \mbox{for } E < E_{
m th} \ \sim dN_{CR}/dE & \mbox{for } E > E_{
m th} \end{cases}$$

1

イロト イヨト イヨト

• two mass scales $m_{\pi}, m_{\mu} \Rightarrow$ two boxes

12 N 4 12 N

< **1** → <

- two mass scales $m_{\pi}, m_{\mu} \Rightarrow$ two boxes
- \Rightarrow for $E_{\nu} \gg m_{\pi}, m_{\mu}$ the same picture

・ 同 ト ・ ヨ ト ・ ヨ ト

- two mass scales $m_{\pi}, m_{\mu} \Rightarrow$ two boxes
- \Rightarrow for $E_{\nu} \gg m_{\pi}, m_{\mu}$ the same picture

for a single source:

• pp: $dN_{\nu}/dE \sim dN_{CR}/dE$

- steeper spectra for $p\gamma$ as result of E_{max} distribution and evolution

- two mass scales $m_{\pi}, m_{\mu} \Rightarrow$ two boxes
- \Rightarrow for $E_{\nu} \gg m_{\pi}, m_{\mu}$ the same picture

for a single source:

▶ pp:
$$dN_{\nu}/dE \sim dN_{CR}/dE$$

▶ p γ :
 $dN_{\nu}/dE \sim \begin{cases} \sim E^{-1} & \text{for } E < E_{\text{th}} \\ \sim dN_{CR}/dE & \text{for } E > E_{\text{th}} \end{cases}$

- steeper spectra for $\mathbf{p}\gamma$ as result of E_{\max} distribution and evolution
- change for interacting nuclei A:
 - \blacktriangleright suppressed by $A^{1-\alpha}$

• • • • • • • • • • •

Observing the π^0 bump in SNR W44:

▲ ▶

Observing the π^0 bump in SNR W44:

• strong evidence for proton acceleration

Tycho observations by VERITAS

- CRs escape early
- CRs escaping have "standard" spectrum, $dN/dE \sim E^{-2}$

4 E

< 47 ▶

Tycho observations by VERITAS

- CRs escape early
- CRs escaping have "standard" spectrum, $dN/dE \sim E^{-2}$
- $E_{\gamma,\max} > 10 \text{ TeV}$ requires:
 - protons with $E > 100 \,\mathrm{TeV}$

A B M A B M

< 47 ▶

Tycho observations by VERITAS

CRs escape early

• CRs escaping have "standard" spectrum, $dN/dE \sim E^{-2}$

- $E_{\gamma,\max} > 10 \text{ TeV}$ requires:
 - protons with $E > 100 \,\mathrm{TeV}$
 - electrons. ICS on CMB

$$E_{\gamma} = \frac{4}{3} \frac{\varepsilon_{\gamma} E_e^2}{m_e^2} \approx 3 \text{ GeV} \left(\frac{E_e}{1 \text{ TeV}}\right)^2$$

4 1 1 1 4 1 1 1

Tycho observations by VERITAS

CRs escape early

• CRs escaping have "standard" spectrum, $dN/dE \sim E^{-2}$

- $E_{\gamma,\max} > 10 \text{ TeV}$ requires:
 - protons with $E > 100 \,\mathrm{TeV}$
 - electrons. ICS on CMB

$$E_{\gamma} = \frac{4}{3} \frac{\varepsilon_{\gamma} E_e^2}{m_e^2} \approx 3 \text{ GeV } \left(\frac{E_e}{1 \text{ TeV}}\right)^2$$

electrons with $E > 50 \,\mathrm{TeV}$

b 4 Te

Tycho: Leptonic versus hadronic models

[Morlino, Capriolo '11]

• precise measurements by PAMELA, soon AMS-II

э

A (10) A (10) A (10)

- precise measurements by PAMELA, soon AMS-II
- local measurements $I(x_{\odot}, E)$ may deviate from average:
 - solar wind
 - local sources

< 回 > < 回 > < 回 >

- precise measurements by PAMELA, soon AMS-II
- local measurements $I(x_{\odot}, E)$ may deviate from average:
 - solar wind
 - local sources
- reconstruct I(E) using gamma-rays from molecular clouds,

$$\frac{dN_{\gamma}}{dE_{\gamma}} \propto \int_{E_{\gamma}}^{E_{\max}} dE' \ \frac{dN_{\rm CR}}{dE'} \ \frac{d\sigma^{pp \to \gamma}(E', E_{\gamma})}{dE_{\gamma}}$$

< 回 > < 回 > < 回 >

- precise measurements by PAMELA, soon AMS-II
- local measurements $I(x_{\odot}, E)$ may deviate from average:
 - solar wind
 - local sources
- reconstruct I(E) using gamma-rays from molecular clouds,

$$\frac{dN_{\gamma}}{dE_{\gamma}} \propto \int_{E_{\gamma}}^{E_{\text{max}}} dE' \; \frac{dN_{\text{CR}}}{dE'} \; \frac{d\sigma^{pp \to \gamma}(E', E_{\gamma})}{dE_{\gamma}}$$

• ill-posed problem, fit instead physically motivated trial functions

• (broken) power-laws

(4 回) (4 回) (4 回)

 $I_{CR}(E)$ from molecular clouds,

$I_{CR}(E)$ from molecular clouds, below break

HESS observations of M87:

3

イロト イポト イヨト イヨト

HESS & VERITAS observations of M87:

э

HESS & VERITAS observations of M87:

Photon horizon

< 47 ▶

Development of the elmag. cascade:

• analytical estimate:

[Strong '74, Berezinsky, Smirnov '75]

$$J_{\gamma}(E) = \begin{cases} K(E/\varepsilon_{\rm X})^{-3/2} & \text{ at } E \leq \varepsilon_{\rm X} \\ K(E/\varepsilon_{\rm X})^{-2} & \text{ at } \varepsilon_{\rm X} \leq E \leq \varepsilon_{\rm a} \\ 0 & \text{ at } E > \varepsilon_{\rm a} \end{cases}$$

- three regimes:
 - Thomson cooling:

$$E_{\gamma} = \frac{4}{3} \frac{\varepsilon_{\rm bb} E_e^2}{m_e^2} \approx 100 \,\,\mathrm{MeV} \,\,\left(\frac{E_e}{1 \,\mathrm{TeV}}\right)^2$$

- plateau region: ICS $E_{\gamma} \sim E_e$
- above pair-creation threshold $s_{\min} = 4E_{\gamma}\varepsilon_{bb} = 4m_e^2$: flux exponentially suppressed

• $q_i(E)$: # particles crossing energy E

- $q_i(E)$: # particles crossing energy E
- energy conservation and $N_e/N_{\gamma} = \text{const.}$

 $\Rightarrow q_i(E_i)E_i = \text{const} \Rightarrow q_e(E_e) \propto 1/E_e$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- $q_i(E)$: # particles crossing energy E
- energy conservation and $N_e/N_\gamma = \text{const.}$

 $\Rightarrow q_i(E_i)E_i = \text{const} \Rightarrow q_e(E_e) \propto 1/E_e$

• IC regime:

$$E_{\gamma} = \frac{4E_e}{3\ln(2E_e\varepsilon_{\rm bb}/m_e^2)}$$

to log. accuracy

 $E_{\gamma} \propto E_e \Rightarrow dE_{\gamma} \propto dE_e$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- $q_i(E)$: # particles crossing energy E
- energy conservation and $N_e/N_\gamma = \text{const.}$

 $\Rightarrow q_i(E_i)E_i = \text{const} \Rightarrow q_e(E_e) \propto 1/E_e$

• IC regime:

$$E_{\gamma} = \frac{4E_e}{3\ln(2E_e\varepsilon_{\rm bb}/m_e^2)}$$

• to log. accuracy

$$E_\gamma \propto E_e \Rightarrow dE_\gamma \propto dE_e$$

• energy conservation $E_{\gamma}dn_{\gamma}=q_e(E_e)dE_e=dE_e/E_e\,,$

$$J(E_{\gamma}) \propto \frac{dn_{\gamma}}{dE_{\gamma}} \propto \frac{dn_{\gamma}}{dE_e} \propto \frac{1}{E_{\gamma}E_e} = E_{\gamma}^{-2}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• cooling regime:

no generation of electrons for $\varepsilon < \varepsilon_a/2$: $q_e(E_e) = q_0$

(4 回) (4 回) (4 回)

• cooling regime:

no generation of electrons for $\varepsilon < \varepsilon_a/2$: $q_e(E_e) = q_0$

 $E_{\gamma} \propto E_e^2 \Rightarrow dE_{\gamma} \propto E_e dE_e$

- 4 回 ト 4 ヨ ト 4 ヨ ト

cooling regime:

no generation of electrons for $\varepsilon < \varepsilon_a/2$: $q_e(E_e) = q_0$

$$E_{\gamma} \propto E_e^2 \Rightarrow dE_{\gamma} \propto E_e dE_e$$

inserting in energy conservation,

$$E_{\gamma} dn_{\gamma} = q_e(E_e) dE_e \propto dE_e \,,$$

gives

$$J(E_{\gamma}) \propto \frac{dn_{\gamma}}{dE_{\gamma}} \propto \frac{dn_{\gamma}}{E_e dE_e} \propto \frac{1}{E_{\gamma} E_e} = E_{\gamma}^{-3/2}$$

< 回 > < 回 > < 回 >

• $q_i(E)$: # particles crossing energy E

- $q_i(E)$: # particles crossing energy E
- cooling regime:

no generation of electrons for $\varepsilon < \varepsilon_a/2$

$$E_{\gamma} \propto E_e^2 \Rightarrow dE_{\gamma} \propto E_e dE_e$$

4 2 5 4 2

- $q_i(E)$: # particles crossing energy E
- cooling regime:

no generation of electrons for $\varepsilon < \varepsilon_a/2$

$$E_{\gamma} \propto E_e^2 \Rightarrow dE_{\gamma} \propto E_e dE_e$$

inserting in energy conservation,

$$E_{\gamma}dn_{\gamma} = q_e(E_e)dE_e \,,$$

gives

$$J(E_{\gamma}) = \frac{dn_{\gamma}}{dE_{\gamma}} \propto \frac{1}{E_{\gamma}E_e} = E_{\gamma}^{-3/2}$$

A 12 N A 12 N

Diffuse flux, analytical estimate for plateau region:

• energy conservation and $N_e/N_{\gamma} = \text{const.}$

 $\Rightarrow q_i(E_i)E_i = \text{const} \Rightarrow q_e(E_e) \propto 1/E_e$

イロト イポト イヨト イヨト 二日

Diffuse flux, analytical estimate for plateau region:

• energy conservation and $N_e/N_{\gamma} = \text{const.}$

$$\Rightarrow q_i(E_i)E_i = \text{const} \Rightarrow q_e(E_e) \propto 1/E_e$$

• IC regime:

$$E_{\gamma} = \frac{4E_e}{3\ln(2E_e\varepsilon_{\rm bb}/m_e^2)}$$

4 3 5 4 3

Diffuse flux, analytical estimate for plateau region:

• energy conservation and $N_e/N_{\gamma} = \text{const.}$

$$\Rightarrow q_i(E_i)E_i = \text{const} \Rightarrow q_e(E_e) \propto 1/E_e$$

• IC regime:

$$E_{\gamma} = \frac{4E_e}{3\ln(2E_e\varepsilon_{\rm bb}/m_e^2)}$$

to log. accuracy

 $J(E_{\gamma}) \propto E_{\gamma}^{-2}$

- A TE N - A TE N

< 47 ▶

Monte Carlo vs. analytical estimate: single source

Cascade spectrum

Monte Carlo vs. analytical estimate: single source

- Origin of seed for EGMF is unknown
- Seed required as input for EGMF simulations

- Origin of seed for EGMF is unknown
- Seed required as input for EGMF simulations
- Observations only in clusters,
 - synchrotron halo: $\Rightarrow B \sim (0.1 1) \, \mu \text{G}$
 - Faraday rotation: $\Rightarrow B \sim (1 10) \, \mu \text{G}$

.

- Origin of seed for EGMF is unknown
- Seed required as input for EGMF simulations
- Observations only in clusters,
 - synchrotron halo: $\Rightarrow B \sim (0.1 1) \, \mu \text{G}$
 - Faraday rotation: $\Rightarrow B \sim (1 10) \, \mu \text{G}$
- Aharonian, Coppi, Völk '94: Pair halos around AGNs

A 12 N A 12 N

- Origin of seed for EGMF is unknown
- Seed required as input for EGMF simulations
- Observations only in clusters,
 - synchrotron halo: $\Rightarrow B \sim (0.1 1) \, \mu \text{G}$
 - Faraday rotation: $\Rightarrow B \sim (1 10) \, \mu \text{G}$
- Aharonian, Coppi, Völk '94: Pair halos around AGNs
- Plaga '95: EGMFs deflect and delays cascade electrons

 \Rightarrow search for delayed "echoes" of multi-TeV AGN flares/GRBs

・ 同 ト ・ ヨ ト ・ ヨ ト

- Origin of seed for EGMF is unknown
- Seed required as input for EGMF simulations
- Observations only in clusters,
 - synchrotron halo: $\Rightarrow B \sim (0.1 1) \, \mu \text{G}$
 - Faraday rotation: $\Rightarrow B \sim (1 10) \, \mu \text{G}$
- Aharonian, Coppi, Völk '94: Pair halos around AGNs
- Plaga '95: EGMFs deflect and delays cascade electrons
 - \Rightarrow search for delayed "echoes" of multi-TeV AGN flares/GRBs
- d'Avezac, Dubus and Giebels '07: non-observation of TeV blazars in Fermi gives lower limit on EGMF

- 3

"GeV jets": B dependence

Influence of EGMF on flux from single source: deflections

Michael Kachelrieß (NTNU Trondheim)

Lower limit on EGMF: [A. Neronov, I. Vovk '10, F. Tavecchio et al. '10]

• choose blazar: large z, stationary, low GeV, high multi-TeV emission

Lower limit on EGMF: [A. Neronov, I. Vovk '10, F. Tavecchio et al. '10]

• choose blazar: large z, stationary, low GeV, high multi-TeV emission

• TeV photons cascade down:

- small EGMF: fill up GeV range
- "large" EGMF: deflected outside, isotropized

Lower limit on EGMF: uniform field

[Dolag et al. '10]

Lower limit on EGMF: uniform field

[Dolag et al. '10]

r limit on EGMF

[Dolag et al. '10]

Lower limit on filling factor:

• model filaments by a top-hat:

Michael Kachelrieß (NTNU Trondheim)

Lower limit on filling factor:

[Dolag et al. '10]

Lower limit on filling factor:

 $loq_{10}(E/eV)$

Multi-messengers

Linear filling factor $\gtrsim 60\%$

- mainly 3-step cascade: $\gamma \rightarrow e^{\pm} \rightarrow \gamma$
- photon mean free path $D_{\gamma}(E) \sim 1000\text{--}50 \ \mathrm{Mpc}$
- electron mean free path $D_e(E) \sim {\rm few\ kpc}$

Michael Kachelrieß (NTNU Trondheim)

Baksan School 2019 29 / 31

э

Lower limit on filling factor:

Linear filling factor $\gtrsim 60\%$

- mainly 3-step cascade: $\gamma \to e^\pm \to \gamma$
- photon mean free path $D_{\gamma}(E) \sim 1000\text{--}50\,\mathrm{Mpc}$
- \bullet electron mean free path $D_e(E) \sim {\rm few\ kpc}$
- $\Rightarrow\,$ electrons are created "everywhere" and feel B only close to interaction point

 $\log_{10}(E/eV)$

Multi-messengers

Michael Kachelrieß (NTNU Trondheim)

Time dependence for flaring source: $B \gtrsim 10^{-17} \,\mathrm{G}$

An alternative interpretation:

• e^+e^- beam of a blazar: $n = f(p_{\parallel})\delta_{p_{\perp}}(0)$

э

An alternative interpretation:

- e^+e^- beam of a blazar: $n = f(p_{\parallel})\delta_{p_{\perp}}(0)$
- anisotropic particle distributions in a plasma are unstable
- can emit Alfven, magnetostatic, ... waves

An alternative interpretation:

- e^+e^- beam of a blazar: $n = f(p_{\parallel})\delta_{p_{\perp}}(0)$
- anisotropic particle distributions in a plasma are unstable
- can emit Alfven, magnetostatic, ... waves
- question: competive with ICS under realistic conditions?
- not decided yet